
January 1986 LIDS-TH-1527

N

A SCHEDULE-BASED APPROACH FOR FLOW-CONTROL

_IN DATA COMMUNICATION NETWORKS

I by

Utpal Mukherji

This report is based on the unaltered thesis by Utpal Mukherji, submitted
in partial fulfillment of the requirements for the degree of Doctor of
Science at the Massachusetts Institute of Technology, Laboratory for
Information and Decision Systems with partial support provided by the
Advanced Research Projects Agency under contract ONR/N00014-84-K-0357
and the National Science Fouidation under grant NSF-ECS-8310698.

QTIC

JNECTE

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

, t , "86 i-22 005

20. (Continued)

> An NP-completeness result is proven, showing, for general networks, that
the scheduling of priority-slots to obtain minimum sum of schedule-delays
is algorithmically hard. Minimun-delay scheduling algorithms for special
network classes, and a scheduling heuristic for general networks, are
presented. For Poisson packet generation at session rates less than
throughput guarantees, limited simulations suggest that low mean values
of packet end-to-end delays, relatively insensitive to choice of window-
sizes, are obtained even at small but non-zero window-sizes.

f..., 4

"7

SECURITY CLASSIFICATION OF THIS PAGE(/tfl. DARM Ent~f..)

4- p'

A SCHEDULE-BASED APPROACH FOR FLOW-CONTROL

IN DATA COMMUNICATION NETWORKS

by

UTPAL MUKHERJI

B.Tech., Indian Institute of Technology, Bombay
(1980)

S.M., Massachusetts Institute of Technology
(1982)

E.E., Massachusetts Institute of Technology
(1984)

SUBMITTED TO THE DEPARTMENT OF

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

V DOCTOR OF SCIENCE

' \ at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1986

0 Massachusetts Institute of Technology, 1986

Signature of Author___ __ __ ___ _ _ __ __

Department of Electrical Engineering and Computer Science
/? January 6, 1986

Certified by '
Professor Robert G. Gallager

Thesis Supervisor

Accepted by
Professor Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

1

A Schedule-Based Approach for Flow-Control

in Data Comnmnication Networks

by

Utpal Mukherji

Submitted to the Department of

Electrical Engineering and Computer Science

on January 6, 1986
in partial fulfilment of the requirements

for the Degree of Doctor of Science

Abstract

An approach for achieving user-session packet throughput guarantees and packet intra-
network delay limits is described. Both objectives are important for packetized voice calls. The

approach permits flexible usage of link capacity by sessions, which is important for data ses-
Ssions. Throughput is guaranteed to a session at links in its path by scheduling priority-slots in

link-frames for transmission. An extension of end-to-end windowing limits the intra-network
delay for a session to the sum of, first, the product of the frame-time and the session's window-

size, and, second, the session's priority-slot schedule-delay. An NP-completeness result is
proven, showing, for general networks, that the scheduling of priority-slots to obtain mini-
mum sum of schedule-delays is algorithmically hard. Minimum-delay scheduling algorithms

for special network classes, and a scheduling heuristic for general networks, are presented. For
Poisson packet generation at session rates less than throughput guarantees, limited simulations
suggest that low mean values of packet end-to-end delays, relatively insensitive to choice of
window-sizes, are obtained even at small but non-zero window-sizes.

Thesis Supervisor: Dr. Robert G. Gallager Accesion For
Title: Professor of Electrical Engineering N TI

~~Ut:anniou.ced [

""'By...

NSAvaiabaty Codes
Avail or

2SpecT al
Vrn~u e

Acknowledgements

I wish to thank Professor Robert Gallager, my thesis supervisor, for having so kindly

provided to me encouragement, guidance, suggestions, ideas, and support, during the course

of my research for this thesis. I am most grateful for having had this opportunity of learning

from him, for the keen interest he has taken in my progress as a student and in my interests

for the future, and for much time and great patience that he has always had for me.

I would like to thank Professor Dimitri Bertsekas, Professor John Tsitsiklis, and Pro-

fessor Alexander Rinnooy Kan, my thesis readers, for having given of their time and knowledge

for my benefit. The many questions put to me by Professor Bertsekas, especially those con-

cerning Chapters 4 and 1, have been most helpful to me. Professor Tsitsiklis I would also like

to thank for many valuable discussions and suggestions.

I would also like to thank Professor Michael Sipser for his assistance in sharpening my

ideas for Section 3.2 of this thesis report.

I thank Ellen Hahne, fellow-student and office-mate, for having graciously shared with

me ideas from her thesis research on flow-control. My many discussions with her have had

their influence on this thesis, and her review of the Introduction has been especially helpful.

I have also benefited from consultations concerning this thesis with Professor James

Orlin, Professor Pierre Humblet, Dr. Moshe Sidi, Professor Thomas Magnanti, and Professor

Christo Papadimitriou. I thank them all. Professor Humblet I would also like to thank for

being readily available for consultation on many other occasions during my studies.

*This research was conducted at the Laboratory for Information and Decision Systems,
Vt.

and I gratefully acknowledge the support provided by the Defence Advanced Research Projects

Agency under Contract ONR/N00014-84-K-0357 and the National Science Foundation under

Grant NSF-ECS-8310698.

3

I wish to thank Professor Sanjoy Mitter, Director of the Laboratory, for much encour-

agement and keen interest in my progress in research. I would like to thank Professor Alvin

Drake, my faculty counselor, for his understanding and able guidance, especially during the

early stages of my graduate program. I would also like to thank Professor George Verghese,

my master's thesis supervisor, for his encouragement and interest throughout my studies.

I take this opportunity to thank Carey Bunks, Jerry Prince, and System Manager Bob

Bruen, for their assistance in setting me up on the Laboratory's new computer system. I thank

Arthur Giordani for his expert drawing of the figures for this report. I also thank Jean Regnier,

John Spinelli, and Isidro Castineyra, for consultations during the text-editing process for this

report on the new type-setting system, and Nancy Young for friendly help in arranging many

meetings.

It has been a pleasure to keep the company of my fellow-students in the Laboratory

including, among others, Tally Altes, Erdal Arikan, Carey Bunks, Isidro Castineyra, Julio

Escobar, Eli Gafni, Ellen Hahne, Dan Helman, Patrick Hosein, Joe Hui, Atul Khanna, Jim

Krause, Jay Kuo, Whay Lee, Christophe Pagezy, Abhay Parekh, Jerry Prince, Jean Regnier,

Jim Roskind, Clint Roth, John Spinelli, Darius Thabit, Ed Tiedemann, Kevin Tsai, Paul

Tseng, Paul Wiley, and Albert Wong. I have especially enjoyed many discussions with Ellen

Hahne, Erdal Arikan, Jean Regnier, Isidro Castineyra, Jim Krause, and Kevin Tsai.

I also wish to thank, among others in my Department or Laboratory, Professor John

Kassakian, Professor Alan Oppenheim, Professor Robert Kennedy, Professor Martin Schlecht,

Dr. Michael Slepian, Dr. Ronald Williams, and Evangelos Milios, for their assistance and

'. . interest.

Finally, many thanks are due to many other students and members of the M.I.T.

K" community, for helping make my stay here an enjoyable one.

4

5%2

Table of Contents

Page
A bstract .. 2

Acknowledgements ... 3
List of Figures .. 7

Chapter 1 Introduction ... 8
1.1 Introduction ... 8
1.2 Background ... 9
1.3 O utline .. 12

Chapter 2 The Schedule-Based Scheme: Packet-Throughput Guarantees
with Upper-Bounded Packet Intra-Network Delays 14

2.1 Introduction .. 14
2.2 Realization of throughput guarantees ... 15
2.3 Upper-bounding of intra-network packet-buffering 15
2.4 Upper bound for packet intra-network delay 17

Chapter 3 Scheduling of Priority-Slots:

An NP-Completeness Result and Some Algorithms 20
3.1 Introduction .. 20
3.2 An NP-completeness result .. 20
3.3 Some scheduling algorithms .. 24

Chapter 4 Mean Packet Delays for Poisson Packet Generation Model:
Simulation Results for Some Networks .. 32

4.1 Introduction .. 32
4.2 Network 1 ... 34
4.3 Network 2 ... 37
4.4 Network 3 ... 40

Chapter 5 Conclusion ... 52

A ppendices ... 57
A Proof of Upper Bound, of Section 2.4, for Packet Intra-Network Delay 57
B A Procedure for Transforming from Non-Integer to Integer Schedules

without Increasing the Sum of Schedule-Delays 61
C Corollaries of the NP-Completeness Result of Theorem 3.1 63

5

L42

D The Scheduling Algorithm, of Section 3.3,
for Networks with Triangular Link-Precedence Graphs 65

E Proof of Inequality 3.6 ... 70
F The Expected Waiting-Times at a Slotted Link

for Some Packet Arrival Processes... 79
G FORTRAN Programs for Simulators SB and FCFS 82

References..114

6

4J

List of Figures

Figure Page

2.1 The token usage algorithm for a session 17

3.1 The structure of the network I in the proof of theorem 3.1 23

3.2 The link-precedence graph for a network 26

3.3 A zero-wait schedule constructed using algorithm At,,.
for the network of figure 3.2 .. 27

4.1 Network 1... 35

4.2 Network 2 ... 38

4.3 Network 3.. 41

D.1 Network and link-precedence graph for appendix D............ 66

.47

Chapter 1

Introduction

1.1 Introduction

V.. Users of a data communication network set up sessions to communicate over the net-

work. The messages generated by a user are split into packets at the source, and then carried

through the network to the user's destination by the user's session. Packets belonging to a

session share, with those belonging to other sessions, the tranjmission capacities of the links

and the storage and switching capacities of the nodes. There is usually much short-term un-

certainty in the packet generation rates for the sessions; this can overload the capacities of the

network and hence cause instability in the network. The research reported here is aimed at

preserving well-defined flows of session packets, while permitting flexible usage of link trans-

mission capacities by the sessions.

The emphasis in most of the work reported in the flow-control literature, as surveyed

by Gerla and Kleinrock [131 for example, is on the control of storage congestion. However,

this research does not emphasize this problem since storage congestion is becoming less of a

problem with the rapidly decreasing cost of providing more storage. Indeed, packet through-

puts and delays, for sessions in networks that use flow-control schemes that emphasize storage

V congestion, are difficult to predict, especially so in the short-term. This research also assumes

that the switching capacities of the nodes are large enough to enable full utilization of link

transmission capacities. This is an appropriate assumption since processing costs have been

decreasing faster than link communication costs.

There are many types of sessions, such as packetized voice, that have relatively stringent

and well-defined packet throughput or delay requirements. There is a need for schemes that

support sessions for such users. The schedule-based approach defined in this thesis is proposed

as a possible means of meeting this need.

8

1.2 Background

Some flow-control problems taken from the literature are discussed in this section in

relation to this thesis. The discussion is set first in the context of conventional data sessions,

then in the context of packetized voice sessions, and finally in a more abstract context.

Peak packet generation rates for interactive data sessions greatly exceed their average

rates. If link capacity suifficient to accommodate sessions' peak rates were to be dedicated to

sessions, the number of sessions that could be accommodated would be severely limited by

available link capacity. On the other hand, if link capacity just sufficient to accommodate

sessions' average rates were to be dedicated to sessions, large amounts of packet buffering

and delay would be required for each session to average the peak levels of its activity over its

inactive periods. Occasionally, packets for a session would be greatly delayed while capacity

dedicated to other channels lay idle. Flexible usage of link capacity is desirable, particularly on

these occasions. Hence, as with most data network flow-control schemes, the schedule-based

approach does not dedicate link capacity to data sessions.

Nodal storage limits in data networks can sometimes constrain the usage of link ca-

pacity by sessions. A session may monopolize the storage capacity at its source node, locking

out packets for sessions that are in transit at that node. Lockouts of sessions at several nodes

in a cycle can result in deadlocks where no packets are successfully forwarded by any session.

However, such deadlocks can be resolved by reservation of some buffers for appropriately de-

fined packet classes (Raubold and Haenle [28]). Deadlocks should become rare with decreasing

storage costs, and with the use of window flow-control schemes. Window flow-control is used
-J in the schedule-based approach, and is outlined below.

A path for routing packets in first-come first-served order from source to destination is

assigned to each session, and the number of packets outstanding for the session along its path

is limited as follows. In end-to-end window flow-control, a session can have at most a number

of packets equal to its window-size, for which its source node has not received packet reception

acknowledgements from its destination node (Cerf and Kahn [5], i- huja [11). In node-by-node

**9

window flow-control, the same constraint applies between consecutive nodes in a session's path

(Rinde and Caisse [30]). In order that nodal storage limits are not exceeded, window-sizes for

the sessions should be chosen so that each node can allocate, to each session using it, a number

of packet buffers equal to the session's window-size. However, proper choice of window-sizes

is difficult because the packet throughput and mean packet delay for each session depends

in a complicated manner on the set of all window-sizes chosen (Reiser [29]). The schedule-

based scheme makes the problem of choosing window-sizes a less critical one by providing a

throughput guarantee, which is not subject to window constraints, to each session. A small

session window-size results in small session packet buffering and delay at intermediate nodes

in the session's path without any change in the session's throughput guarantee.

*The burstiness present in conventional data sessions is also present in voice calls to a

lesser degree, since the calls alternate between talk-spurts and silences. As an example, the

Time Assigned Speech Interpolation (TASI) system supports a larger number of voice calls on a

single link than would have been possible if voice calls had no silences, by inserting talk-spurts

for calls in the silence periods of other calls (Bullington and Fraser [4]).

The burstiness of voice calls has also prompted experiments in voice communication

over data networks (Weinstein and Forgie [32]). During talk-spurts, voice calls generate packets

at regular intervals that depend on the bit-rate used for voice coding, and have corresponding

packet throughput requirements (Gold [14]). Packet transit delays from source nodes to desti-

nation nodes are also required to satisfy limits that are set so that, at the destinations, packets

-, can be played back at regular intervals. However, large voice packet buffering and delay can

result at intermediate nodes in a call's path as link loads approach link capacities. Embedded

coding of voice may be used, so that excess delay can be relieved by discarding packets that

contain less significant portions of the coded voice signal, at both source and intermediate

nodes (Bially, Gold, and Seneff [2]). The schedule-based approach limits packet transit delays

from source nodes to destination nodes, and may be a simple approach to limiting voice packet

delays. Further, at the possible cost of some additional pre-transmission buffering and delay, a

large number of voice calls between the same source and destination can be multiplexed onto

10

a single schedule-based session that has an appropriately sized throughput guarantee, as in

TASI (Weinstein and Hofstetter [33]).

Link-frames have been used in time-division multiplexed circuit-switched voice net-

works, where a link-frame consists of time-slots that are assigned to the voice calls using the

link, and the frame-time duration is the same on all links. Similar link-frames have also been

proposed for networks that carry circuit-switched voice and packet-switched data, where the

boundary defining the set of voice slots in a frame is moved in order to allow data packets to use

voice slots that have not been assigned to voice calls (Coviello and Vena [71). Data throughput

would be increased and data delay decreased if the frequent silences within voice calls were

detected, as in TASI, and the silences were used to transmit data packets (Bially, McLaugh-

lin and Weinstein [3], Williams and Leon-Garcia [341). This is possible in the schedule-based

approach, where both data and voice are assumed to be packetized.

The possibility of integrating conventional data sessions and packetized voice calls in

data networks has motivated flow-control studies in a more general context. Several flow-

control algorithms have been devised that achieve fair allocation of network link capacity to

sessions, in the sense of maximizing the minimum session allocation (Jaffe [21], Hayden [18],

Gafni [9], Mosely [24], Gafni and Bertsekas [10]). These algorithms are effective under condi-

tions where sessions are set up and disconnected infrequently. The ability of these algorithms to

track changes in session activity throughout a network, maximize the minimum active-session

allocation, and implement these allocations, may be limited by excessive time-requirements

for measurement and communication relating to the algorithms (Oshinsky [26], Mosely [24]).

Round-robin scheduling of sessions for packet transmission at links in the network, in conjunc-

tion with conventional window flow-control, has been proposed as a simple real-time approach

for achieving this objective (Hahne [17]). The schedule-based approach does not necessarily

maximize the minimum session allocation, but is a Similar real-time approach that achieves

fairness in the sense of providing throughput guarantees to the sessions.

11

A," ' ,," " ,•" " , ''' ' :' ; ' . '\ . .. ' ,'- . .i- .; .- ' .- :- '"'' 2.. .,-',' ... ,

In any flow-control approach, the mean packet end-to-end delay for a session, from

generation at source to reception at destination, grows with increasing levels of transmission

capacity utilization on the links in the session's path. Proper routing of sessions at set-up time,

and control of session set-up attempts, are required for maintaining balanced and limited link

utilizations (Schwartz and Stern [311). The integrated routing and control of session set-up for

data, voice, and data and voice together, has been the subject of some research (Golestaani [15],

The [20], Gafni [9]). The schedule-based flow-control approach should be used in conjunction

with an appropriate routing and control algorithm.

A scheduling problem relating to the packet transit delay limits in the schedule-based

approach is considered in this thesis. This work falls in the area of deterministic, time-periodic

scheduling. Some work has been reported in this area (Orlin [25]), for example in the context of

task scheduling in pipelined computers (Kogge [23], pp. 71-112) and of production scheduling

in manufacturing flow-shops (Hitz [19], Graves et al. [16]).

1.3 Outline

Some physical and architectural assumptions are inherent in the schedule-based ap-

proach. First, each link can reliably transmit a known amount of information in a link-frame.

Frames occur periodically on each link at intervals of one frame-time, where the frame-time

is the same on all links. Second, each session has a path set up in the network at session

set-up time, along which packets for the session can be routed. Packets for each session are

transmitted in the same order on all links in the session's path. Third, information can be

communicated to a session's source from its destination for flow-control purposes.

The schedule-based approach is described in Chapter 2 of this report. It is shown that

the scheme provides each session in the network with a packet throughput value up to which

throughput is guaranteed, as well as an achievable upper bound on the intra-network delay

that a packet incurs in the network after starting transmission on the first link in its path.

The throughput guarantee is obtained by assigning transmission priority to the session, on

w.~ -~each link in its path, in certain time-slots in the link-frames. The upper bound on packet

12

intra-network delay is obtained by, in addition, limiting the total number of packets for the

session that can be in transit in the network at any given time, using an extended version

of end-to-end windowing. The delay bound is shown to be a sum of, first, the product of

the session'swindow-size and the frame-time, and, second, the session's schedule-delay. The

schedule-delay is a function of the positions of the session's priority-slots in the link-frames.

The scheduling of priority-slots, so as to result in low values of schedule-delays, is

considered from an algorithmic point of view in Chapter 3. This problem is shown to be hard

for general networks, as is the case for general instances of many other scheduling problems, by

proving an NP-completeness result. (Garey and Johnson [12] provide a guide to the theory of

NP-completeness.) However, simple and efficient algorithms that result in minimal schedule-

delays are presented for special classes of networks. A scheduling heuristic, that can be applied

2to general networks, is also presented.

Mean packet delays observed in simulations of some networks, with session packets

generated in Poisson processes at known rates that are less than the throughput-guarantees,

are presented in Chapter 4. The simulation results suggest that low mean values of packet

end-to-end delays, from generation at source to reception at destination, are obtained in the

schedule-based scheme even with small, but non-zero, window-sizes. Lower values of schedule-

delays result in lower mean values of packet intra-network delays, but do not necessarily change

mean packet end-to-end delays. In contrast with the low sensitivities of mean end-to-end delays

to changes in window-sizes for the schedule-based scheme, these sensitivities for conventional

end-to-end windowing, with first-come first-served transmission of packets at links, are observed

to be relatively large.

This thesis report concludes, in Chapter 5, with additional comments on the schedule-

based approach.

13

Chapter 2

The Schedule-Based Scheme:

Packet-Throughput Guarantees with Upper-Bounded Packet Intra-Network Delays

2.1 Introduction

Throughput guarantees for sessions are realized in the schedule-based scheme by defin-

ing a network-wide frame-time, and, at each link in each session's path, assigning packet trans-

mission priority to the session in a time-periodic manner, once per frame-time. An extended

version of end-to-end windowing maintains the throughput guarantee for each session, while

upper-bounding the intra-network packet buffering for the session. The throughput guarantee

and bounded buffering, together, result in an upper bound on the packet intra-network delay

k ~ for the session. These operations are explained in this chapter, assuming the following network

model.

a) All packets, for all sessions, are the same number of bits in length. Each link is

time-slotted, with slot duration equal to the packet transmission time. Packet transmissions

begin at the start-times of slots. Links are error-free, and can reliably communicate packets,

one per time-slot. All links are equal in bit-speed, so that the slot duration on each link is the

same. This duration is one time-unit.

b) All packets belonging to a session are routed along the same path in the network,

where the path is chosen at session set-up time. The packets belonging to the session are

transmitted in the same order on all links in the session's path. Packet propagation delays at

all links, and packet switching delays at all nodes, are zero.

c) Window-tokens are returned to a session's source node from its destination node,

for all sessions.

14

2.2 Realization of throughput guarantees

The frame-time for the network is chosen equal to T time-units, and a link-frame of

length T slots is defined on each link. Each session is guaranteed a throughput of 1 packet per

T time-units, as follows. At set-up time, a session's path is chosen subject to the restriction

that the number of sessions sharing any link is at most T, and the session is assigned priority

of transmission in one slot in the frame on each link in its path. Link-frames are repeated on

their respective links at intervals of one frame-time. Thus, each session is guaranteed packet

transmission priority, on each link in its path, at intervals of T time-units, making feasible a

-~ session throughput of 1 packet per T time-units.

-\ 2.3 Upper-bounding of Intra-network packot-buffering

Consider a session s that shares a link I with T - 1 other sessions. If each session gener-

ates packets in a random process, with mean packet-generation rate less than but approaching

11T packets per time-unit, the packet-buffering requirements for session s typically approach

infinity. The storage is required along the part of the session's path that is up-stream from

the link 1. If the link is not the first in the session's path, this storage may be required at an

intermediate node in the path. The storage requirements for the session can be reduced at

the intermediate nodes in its path, and concentrated mainly at its source node, by using the

following extended version of end-to-end windowing, which upper-bounds the packet-buffering

for a session at all its intermediate nodes combined.

* Real tokens for the session, equal in number to the session's window-size, are created

at session set-up time, at the session's source node. As in conventional end-to-end windowing,

these tokens are returned to the session's source node after they reach its destination node. If

a packet belonging to the session is to be transmitted on the first link in the session's path

in a non-priority slot, in which the session does not have pre-assigned transmission priority,

the packet is required to acquire a real token at the source node, and deposit the token at the

opposite node for the link upon reception there. While the session 's Usage of non-priority slots

V on the first link in its path may be blocked temporarily for a lack of real tokens, its usage of

* 15

its priority-slots is not blocked on any link in its path, so that its throughput guarantee of one

packet per frame can be maintained. If a packet belonging to the session is transmitted on the

first link in the session's path in a priority-slot, it is assumed to carry a fictitious token for the

session over the link, and deposit the token at the opposite node for the link. Unlike real tokens,

fictitious tokens are removed from the network when they reach the session's destination node.

Since each packet belonging to the session carries a token for the session over the first

link in the session's path, the number of such packets that are received at the first intermediate

node in the path equals the number of times that tokens for the session, of real or fictitious

type, are received at that node. When a packet belonging to the session is transmitted on

a subsequent link in the path, it is again required to carry a token for the session, real or

fictitious, over the link and deposit the token at the Opposite node for the link. Thus, the

number of the session's packets at an intermediate node in the path, equals the number of real

and fictitious tokens for the session at the node.

The number of real tokens present for the sesion, at all intermediate nodes combined,

is at most equal to the window-size for the session. The number of fictitious tokens is bounded

as follows. The maximum rate at which fictitious tokens are carried over the first link in

the session's path equals one per frame. The session does not have any guarantee that its

packets can be transmitted in non-priority slots on any link in its path. A fictitious token is

selected if possible, rather than a real token, when a packet is transmitted in a priority-slot

on a subsequent link. This ensures that the number of fictitious tokens at intermediate nodes

remains upper-bounded, even in the extreme case for which the fictitious token rate on the

first link is one per frame and only priority-slots, once per frame, are available on subsequent

links. In the extreme case above, this rule forces the real token circulation rate to zero, and the

fictitious token rate on all links in the path equals the guaranteed packet rate of one per frame.

While real and fictitious tokens are thus sometimes carried in different order on different links

in the session's path, packets for the session are always transmitted in the same order on all

links in the path. The token-usage algorithm for a session is summarized in Figure 2.1.

16

k-~

Type of token as function of link and slot

Priority slot Non-priority slot

First link Fictitious Real

Subsequent link Fictitious, if any; Fictitious or Real

otherwise, Real

Number of Real tokens equals Window-size

Real tokens are returned to source from destination

Fictitious tokens are always present at source

Figure 2.1 The Token Usage Algorithm for a Session

2.4 Upper bound for packet Intra-network delay

The intra-network delay, for a packet belonging to a session, is the time from the start

of packet transmission on the first link in the session's path, to the finish of packet reception

on the last link in the path. The packet intra-network delay is equal to 1 if the number H of

links in the path is 1. Otherwise, as shown here, the delay is upper-bounded by the sum of,

first, the product wtT of the session's window-size w and the frame-time T, and, second, the

session's schedule-delay.

The schedule-sequence, schedule-delay, and schedule-wait, for a session, are defined as

*follows. Assume, for purposes of definition, that, first, the session can transmit only in priority-

slots on each link in its path, second, the session has only one packet to carry through the

network, and, third, the packet is transmitted on the first link in the priority-slot that starts

at time a,, 0 :5 a1 < T. Let a, 2 :< h < H, denote the start-time of the priority-slot, on

the h-th link in the path, in which the packet is transmitted on that link. Since priority-slots

17

recur on each link at intervals of the frame-time T, the packet waits less than T time-units at

each intermediate node in the session's path, i.e., 0 h + 1 oh+1 < O4, +1 + T, 1 _ h _ H - 1.

The schedule-sequence for the session is the sequence a,, a2 ,..., The schedule-delay for

the session is oh - a1 + 1, the intra-network delay for the packet. The schedule-wait for the

session is oH - a1 + 1 - H, the difference between the schedule-delay and the H time-units used

for transmission of the packet. Since there are H - 1 intermediate nodes in the session's path,

the schedule-wat is less than (H - 1)T. Hence, the schedule-delay is less than (H - 1)T + H,

and the delay-bound to be shown, (OH - 01 + 1) + wT, is less than (w + H - 1)T + H.

A heuristic argument is presented below, for a session with H > 2 links in its path, to

show that the intra-network delay for any packet belonging to the session is upper-bounded

by (oH - a, + 1) + wT. The proof is presented in Appendix A.

Worst-case scenario when w = 0 (a heuristic argument)

Since the session has no real tokens, all packets use priority-slots when they are trans-

mitted on the first link in the path. The worst-case intra-network delay for the session arises if

the maximum possible number of packets for the session are transmitted on the first link, and

slots are available to the session on subsequent links at the minimum possible rate. Therefore,

assume that the i-th packet, i > 1, for the session starts transmission on the first link at time

01 + (i - 1)T, and that only priority-slots are available to the session on subsequent links.

In this scenario, the first packet for the session starts transmission on the second link

in the path at time a2. Also, it follows that the i-th packet, i > 2, starts transmission on the

second link at time a2 + (i - 1)T. In general, the i-th packet, i > 1, starts transmission on the

h-th link, 1 :5 h :5 H, at time ah + (i - 1)T. The intra-network delay for the i-th packet, i > 1,

is [oH + (i - 1)T] - [a, + (i - 1)T] + 1, or aH - a, +1, which is the delay-bound to be shown

for w 0.

18

Worst-case scenario when w > 0 (a heuristic argument)

If the maximum possible number of packets for the session are transmitted on the first

link, subject to the condition that only priority-slots are available to the session on subsequent

links, then, first, the fictitious tokens for the session start transmission on the links in the

path at the same time-instants as the packets, or fictitious tokens, do in the wo = 0 worst-case

scenario, and, second, the w real tokens for the session are backlogged at the second link in

the path. Thus, this scenario results in the maximum numbers, and maximal delaying, of both

fictitious and real tokens, and hence packets, in the network for the session.

In this scenario, packets for the session can use only priority-slots when they are trans-

mitted on the first link in the path. A packet that starts transmission on the first link at time

al + (i - 1)T cannot start transmission on the second link at time a2 + (i - 1)T, but must do

so after the wo packets belonging to its session, that are enqueued in front of it at the second

link, are transmitted on the second link. Thus, the packet starts transmission on the second

link at time U2 + (i - I + w)T, carrying a fictitious token, and starts transmission on the h-th

link, h 2! 3, at time a + (i - 1 + w)T, carrying the same fictitious token. The intra-network

delay for the packet is [aH + (i - 1 + w)T]- [al + (i- 1)T + 1, or (am - al + 1) + wT, which

is the delay-bound to be shown.

f:, ,19

4

4" ".'. ' " . '..'". ... : ",,.. - .. ' ., '. . ,'. '"'""" J . ' '..""..'.," . ''- " ' - ' '' '. ' '

~A.. Chapter 3

Scheduling of Priority-Slots:

An NP-Completeness Result and Some Algorithms

3.1 Introduction

The schedule-based scheme, as described in Chapter 2, upper-bounds the packet intra-

network delay for each session by the sum of, first, the session's schedule-delay, and, second,

the product of the session's window-size and the frame-time. The schedule-delay for a session

is determined by its schedule-sequence, i.e., by the position of its priority-slot in the frame

on each link in its path. The scheduling of priority-slots, so as to result in low values of

schedule-delays, is considered from an algorithmic point of view in this chapter.

A schedule that has non-integer valued slot start-times can be efficiently transformed

into a schedule with only integer-valued start-times, without increasing the sum of schedule-

delays; the procedure is described in Appendix B. Accordingly, attention is restricted to the

construction of schedules that have integer-valued slot start-times.

First, for networks that have frame-time equal to 3 time-units, the problem of decid-

ing whether schedules that have all schedule-waits equal to zero exist, is shown to be NP-

complete. In the theory of computational complexity, it is conjectured that there do not exist

any polynomial-time algorithms for solving all instances of a problem that is NP-complete

(Garey and Johnson [12]). Hence, some special classes of networks are considered next, for

which linear-time algorithms are presented for computing schedules that have the minimum

sum of schedule-waits. Finally, a scheduling heuristic that can be applied to general networks

is presented together with upper bounds on the resulting sum of schedule-waits.

3.2 An N P-completeness result

Let S denote the set of sessions, and L the set of links, in a network that has frame-

time equal to T time-units. The paths for the sessions are known, and the number of sessions

20

% sharing any link is at most T. Let H', 1 _5 s5 ISI, denote the number of links in the path for

the s-th session. The schedule for the network is the set of schedule-sequences for the sessions

in S. More precisely, an integer schedule o is a mapping o r, 1 5 a < ISI, 1 < h < H', into

the set of integers, that satisfies the following conditions 3.1.

0 5 a,' <5 T - 1, 1 <5 s:5 ISI. (3.1a)

1 :5 _< h-._. 5 _T, 1 8 a 5 _ S, 2< h H'. (3.1b)

If the l-th link is the h-th sequential link in the s-th session's path and also the h'-th

sequential link in the s'-th session's path, 1 1 5 ILl, s : s', 1 < 8,8' < S 1 < h < H', 1 <

h' < H", then

at, 96 a" (modulo T). (3. 1c)

The sum of schedule-waits for a schedule a is

Wo = - tTf + 1 - H)- (3.2)

: .The following 'Network 3-Periodic Zero-Wait Scheduling' decision problem is shown

here to be NP-complete : for a network instance I that has frame-time T = 3 does there

exist an integer schedule o, that has sum of schedule-waits We = 0 ? Some corollaries of this

NP-completeness result are presented in Appendix C.

Theorem 3.1:

The 'Network 3-Periodic Zero-Wait Scheduling' problem is NP-complete.

Proof: The theorem follows from a) and b) below.

a) The 'Network 3-Periodic Zero-Wait Scheduling' problem is in the class of problems

* ~NP. This is shown as follows.

21
. ..

Assume that there exists a zero-wait integer schedule a for the network instance I.

Then, the validity of conditions 3.1 for schedule a, and of the value W, given by eqn. 3.2, can

be checked in polynomial-time. Therefore, the problem is in the class NP.

* b) The NP-complete 'Graph 3-Colourability' problem is reducible to the 'Network 3-

Periodic Zero-Wait Scheduling' problem, in polynomial-time. This is shown below.

.9 ,Let V denote the set of vertices, and E the set of edges, of a graph. A 3-colouring f for

- the graph is a mapping f., 1 _< v < IV,, into the set {0, 1,2}, of 'vertex colours', that satisfies

the following condition. If the e-th edge is [u, v], i.e., incident on the u-th and v-th vertices,

".- [1 :5 e < JEJ, u 0 v, 1 _< u, v < IVI, then

Al 56 A. (3.3)

Consider the 'Graph 3-Colourability' problem : for a graph instance G = (V, E), does there

N exist a 3-colouring f ?

The procedure described next is used to construct a network instance I corresponding

to the graph instance G, with the following properties. The network has frame-time T = 3.

There is a one-to-one correspondence of sessions in the network to vertices in the graph. Each

link in the network lies in one or two of the paths for the sessions. All links are numbered

0, 1, or 2. As shown in Fig. 3.1a, the numbers of the sequential links in each session's path

constitute a modulo-3 count, with the first link numbered 0. The construction procedure is as

follows.

i) For 1 :5 v < lVI, repeat the following. Construct a separate first link, numbered 0,

for the v-th session's path.

ii) For 1 :5 e < JEl, repeat the following. If, in graph G, the e-th edge is incident

on the u-th and v-th vertices, then extend the u-th and v-th sessions' paths so as to meet

in a common link, as shown in Fig. 3.1b. If the old last links in the u-th and v-th sessions'

paths are numbered z and y respectively, then w(z, y) and z(z, y) links are padded on in the

22

'4

.4'

0o 2 0!0 0 1 01 2

t
First link in path

The numbers of the links
form a modulo-3 count

(a) The numbers of the links in a session's path

S" (w,z) x=O x:1 X=2

Links padded on in the paths, yO (1,1) (1,2) (1,3)
between old last links and
new last link y=1 (2,1) (1,1) 0,2)

""th y=2 (3,1) (2,1) (1,1)'"u-th Xw(x,y) Ilinks

session's: i
path
v-th "

session's:-path z(xy) links Common new last link in the paths,ph Ihas number that forms a modulo-3

Old ost inksin te pahscount with the numbers in each path
Old last links in the paths, (Example shown has x=O,y=I, for

Snumbered x and y which (w,z)= (2,1), so that common
new last link is numbered
(x+w+li)modulo-3=

X (y+z+i) modulo-3=0)

(b) The extension of the u-th and v-th sessions' paths
corresponding to edge [uv]

Figure 3.1 The Structure of the Network I in the Proof of Theorem 3.1

23

respective paths, so that the number resulting for the new common last link forms a modulo-3

count with the link-numbers in each path.

Thi

This is a linear-time construction procedure; the constructed network I has IV I sessions

and at most IV I + 51El links. As shown next, a zero-wait integer schedule exists for network I

if, and only if, a 3-colouring exists for graph G. Thus, the 'Graph 3-Colourability' problem is

reduced to the 'Network 3-Periodic Zero-Wait Scheduling' problem, in polynomial-time.

Suppose f is a 3-colouring for G. Then, as shown below, there exists a zero-wait integer

schedule for I. Define o by a' = , + h - 1, 1 :5 v < lVi, 1 < h < H". Then, the integers

',o satisfy conditions 3.1a and 3.1b, and the value W, given by eqn. 3.2 is 0. Condition 3.1c
is verified as follows. If a link is the hu-th and h.-th sequential link in the u-th and v-th

sessions' paths respectively, then it is the common new last link resulting from the extension

corresponding to the edge [u, u] in G. Hence, fu # fu(modulo 3), and hu = h,, (modulo 3).

Therefore, a". $ a'. (modulo 3), and condition 3.1c is satisfied. Thus, a is a zero-wait integer

schedule for r.

SConversely, suppose that a is a zero-walt integer schedule for I. Then, as shown below,
there exists a 3-colouring for G. Define f by f. = a", 1 < v < l. Then, each numberf is

0, 1, or 2. Condition 3.3 is verified as follows. If [u,v] is an edge in G, then there is a link in

I that is the new last link resulting from the extension corresponding to edge [u, v]. Let this

link be the hu-th and h.-th sequential link in the u-th and v-th sessions' paths respectively.

Then, ah a" (modto 3), and hu = h, (modulo 3). Since W, = 0, = o + hu - 1 and

"" = o + h. - 1. Therefore, o' 6 o(moduto 3), and condition 3.3 is satisfied. Thus, f is a

-. "3-colouring for G.

This completes the proof of Theorem 3.1.

3.3 Some scheduling algorithms

The discussion of scheduling algorithms is facilitated by the following definition of the

link-precedence graph for a network. There is a one-to-one correspondence between links in

24

the network and vertices in the link-precedence graph. There is a directed arc a = (i,j) from

the i-th vertex to the j-th vertex in the link-precedence graph if, and only if, at least one

session in the network has the corresponding links, in the order (i,j), as consecutive links in

its path. The weight w. = wij, of arc a = (ij) of the link-precedence graph, is the number

of sessions that have the corresponding links as consecutive links in their paths.

If the link-precedence graph is a tree, then the following algorithm At,.. constructs an

integer schedule that has sum of schedule-waits equal to 0, in linear-time. Atre constructs

the schedule link by link, each time scheduling all priority-slots that are to be scheduled in

the link-frame under consideration. Figure 3.2 shows a network for which the link-precedence

graph is a tree. Figure 3.3 shows a zero-wait schedule constructed for this network using At....

Algorithm Atr,..:

Step 1) Select a root vertex for the link-precedence tree. Number all ILL vertices in the

tree, in non-decreasing order of distance in link-hops from the root. Renumber links in the

network so that each link-precedence graph vertex and its corresponding link have the same

number.

Step 2) Construct an integer schedule for all priority-slots in the frame on link number

.4 1.

Step 3) Perform the following ILI - 1 iterations. At iteration 1, 2 < 1 5 ILI, construct

an integer schedule for all priority-slots in the frame on the /-th link as follows.

There is an integer i, 1 < i < 1 - 1, such that either (i,l) or (1,i) is an arc in the

link-precedence graph. Suppose that (i,l) is an arc in the link-precedence graph. Then, the

i-th link is received at the node from which the I-th link transmits. For each session that has

the i-th and l-th links as consecutive links in its path, schedule its priority-slot on the 1-th link

so as to start when its priority-slot finishes on the i-th link, modulo the frame-time. Suppose,

instead, that (1, i) is an arc in the link-precedence graph. Then, the l-th link is received at the

25

441

vN

*1',

Network:
Number of sessions ISI=8
Number of links ILI= 6

7 Frame-time T=3

1 25

22 5

- 3 4 6
3 •4

6

Link-precedence graph:
k

o--*--o indicates that
i the weight of arc

(i,j) is k

2- 5

Figur 3. Th5ikPeeec rp o ewr

26

* V-'- I - " "- -. 6 - - '.

":!'," .2 1

TI ,

Frame-time T=3

Time-

Link- precedence / Network
graph vertices / links

Root vertex- 1: 3 1 2

3: i3 34 6

4: 5 3 .___ _4,

5: _ 7_ 8

ILl- 6: g3

Figure 3.3 A Zero-Walt Schedule Constructed Using Algorithm At,.,

for the Network of Figure 3.2

27

* A; ,- ,,"

node from which the i-th link transmits. For each session that has the /-th and i-th links as

consecutive links in its path, schedule its priority-slot on the /-th link so as to finish when its

* - priority-slot starts on the i-th link, modulo the frame-time.

Suppose that some priority-slots remain to be scheduled in the frame on the I-th link.

Since the link-precedence graph is a tree, these slots are the first of their respective sessions'

priority-slots to be scheduled. Schedule these remaining priority-slots so as to start at integer

times in the frame that are as yet unassigned.

This completes the description of At,,..

The simplest non-trivial link-precedence graph that is not a tree is a directed triangle.

In this case, as shown in Appendix D, the minimum sum of schedule-waits is 0 or 1, and

- there is a linear-time algorithm for constructing a minimum-wait integer schedule. If the link-

precedence graph is a triangle with tree-offshoots, the following linear-time algorithm computes

an integer schedule that has minimum sum of schedule-waits. First, all priority-slots that are to

be scheduled on the links corresponding to the vertices of the triangle are scheduled using the

algorithm for a triangular link-precedence graph. Then, each of the tree-offshoots is scheduled

using algorithm At,,,, with the appropriate triangle vertex already scheduled chosen as root

vertex. The minimum sum of schedule-waits is either 0 or 1.

Algorithm At... can be extended so as to apply to general networks. The extended

algorithm Ah.w..i,, described below, is applied to each connected link-precedence graph com-

ponent LPG.

Algorithm Ahwti:

Step 1) Compute a maximum-weight spanning tree MST, for LPG. This can be done

in quadratic-time by appropriately applying an algorithm, such as described by Papadimitriou

and Steiglitz [271, for computing minimum-weight spanning trees in general graphs.

28

Step 2) Select a root vertex for MST. Number all ILl vertices in MST in non-decreasing

order of distance,in MST, in link-hops from the root. Renumber links in the network so that

each link-precedence graph vertex and its corresponding link have the same number.

Step 3) Construct an integer schedule for all priority-slots in the frame on link number
i 1.

Step 4) Perform the following ILl - 1 iterations. At iteration 1, 2 < I < ILl, compute

an integer schedule for all priority-slots in the frame on the I-th link as follows.

Let A, denote the set of arcs a in LPG, that are of the form a = (i,1) (or a = (1,i)),

where 1 <_ i < 1 - 1. Let W ' denote the following function of the schedule to be computed

for the I-th link. If a = (i,1), then W. is the sum, over all w. sessions that have the i-th and

1-th links as consecutive links in their paths, of the modulo-frame-time wait between the finish

of the session's priority-slot on the i-th link and the start of its priority-slot on the l-th link.

Otherwise, a = (1, i), and W.' is the sum, over all w. sessions that have the 1-th and i-th links

as consecutive links in their paths, of the modulo-frame-time wait between the finish of the

session's priority-slot on the i-th link and the start of its priority-slot on the i-th link. Assign

integer start-times in the frame on the 1-th link to the priority-slots for the sessions sharing the

link, using an assignment algorithm that minimizes E'GEA, W.. This can be done in cubic time

by applying an optimal assignment algorithm such as described in Papadimitriou and Steiglitz

[271.

This completes the description of ,

The schedule-wait for a session that contributes to the weights of arcs in the link-

precedence graph component LPG is the sum, over all arcs a = (i, 1) in LPG such that the

i-th and l-th links are consecutive links in the session's path, of the modulo-frame-time wait

between the finish of the session's priority-slot on the i-th link and the start of its priority-slot

on the 1-th link. W., a = (i,l), is the sum, over all w. sessions that have the i-th and 1-th

links as consecutive links in their paths, of the modulo-frame-time wait between the finish of

29

•r W
I' . " " " • ' . . " " " • " " " " " " " % " "t" % "

the session's priority-slot on the i-th link and the start of its priority-slot on the 1-th link.

The set of all arcs in LPG is the union of the ILI - 1 sets Al, 2 < I < ILI. Hence, the sum,

over all sessions that contribute to the weights of arcs in LPG, of schedule-waits for sessions
'4.- v-,i2 GL WG"3."is EI=L s,,A, W.

The sum of schedule-waits W,, for the integer schedule a, computed by Aouri °it, is

shown below to satisfy the following upper bounds. Let T denote the frame-time for the

network. Then,

W. < f(T - 1) Z(i,)tMST wid (Tree bound); (34)
(' _ - -) ("i)LPG W (Assignment bound).

The Tree bound is obtained as follows. The modulo-frame-time wait between the

priority-slots for a session that are on consecutive links in the session's path, in an integer

schedule, is an integer between 0 and T - 1. At iteration I in step 4 of Aheuristie, there is

- an integer i, 1 < i < 1 - 1, such that either (i,1) or (1, i) is an arc in MST. Suppose that

priority-slots were scheduled at iteration I so that W.' = 0 when a = (i, 1) (or a = (1, i)), as is

done in algorithm At,,,. Then, defining A' to be Al - {(i,l)} (or A, - {(1,i))),

'5 E W' < (T- 1). (3.5)
agA l tA

This inequality must also hold for the actual scheduling at iteration 1, for which the value of

EatAl W' is minimum. Summing inequality 3.5 over all iterations 1, 2 < _ ILI, the Tree

bound results.

The Assignment bound is obtained next. In Appendix E, it is shown that the priority-

slots at iteration I in step 4 of Ahouriti can be scheduled so that

E:: 2- W_. (3.6)
scAl aeAj

This inequality must also hold for the actual scheduling at iteration 1. Summing inequality 3.6

over all iterations 1, 2 5 1 ILI, the Assignment bound results.

30

The Tree bound is zero when LPG is a tree, and a is then a schedule with zero sum

of schedule-waits. More generally, a zero-wait schedule is obtained when the link-precedence

graph is a forest. The Tree bound is proportional to the sum of the weights of all arcs in

LPG that are not in MST. Since MST is a maximum-weight spanning tree for LPG, the

value of this sum is minimum among those for all spanning trees. The Assignment bound

is equal to the expected value of the sum of schedule-waits that results from scheduling at

random, as shown below. Suppose that the start-time of each priority-slot in each link-frame

is uniformly distributed among the T integer time-instants in the frame, and is independent of

the start-times of priority-slots in other link-frames. Then, the expected value of the modulo-

frame-time wait, between the priority-slots for a session that are on consecutive links in the

session's path, is (T - 1)/2. Hence, the expected value of the resulting sum of schedule-waits

equals the Assignment bound.

*. Any integer schedule can be locally redefined without increasing the sum of schedule-

waits by rescheduling a link, given the schedule on all its neighbouring links, using an optimal

assignment algorithm. Suppose that links are considered for rescheduling in turn, keeping

the schedule unchanged if rescheduling would leave the sum of schedule-waits unchanged,

and rescheduling otherwise. Then, each rescheduling decreases the sum of schedule-waits by

at least one. Suppose also that this iterative procedure is continued until each link has been

considered for rescheduling at least once since the 'ast rescheduling. Then, the sum of schedule-

waits W,, for the resulting "schedule o' also satisfies the Assignment bound. This result is

obvious if the procedure above is followed starting with a schedule computed using algorithm

Ah.,.t 4 . Otherwise, this result can be obtained by verifying the following statements. The

proof given in Appendix E for inequality 3.6 holds when, in 3.6, the set A, is replaced by

the set Al' of all arcs in LPG that are of the form (i,l) (or (I, i)). Suppose that schedule

a' is used for purposes of defining W.. Then, since an optimal assignment algorithm has

been used at each iteration, inequality 3.6, with Al replaced by A', holds for 1 < I < ILI.

Further, W', = ("=.".,A, W.)/2. Hence, from 3.6, W,, < ((T-1)/2)(" II "A w.)/2 =
((T - 1)/2) Z.LPO w.-, and W., satisfies the Assignment bound.

31

Chapter 4

Mean Packet Delays for Poisson Packet Generation Model:

Simulation Results for Some Networks

4.1 Introduction

In contrast with the upper bound developed in Chapter 2 for the packet intra-network

delay, mean packet delays observed in simulations of three networks are presented in this

chapter. Session packets are generated in Poisson processes at known rates that are less than

the throughput-guarantees. For purposes of comparison, the simulations are conducted with,

first, the schedule-based scheme, and, second, a scheme that uses conventional end-to-end

windowing and first-come-first-served transmission of packets at links. The simulation results

are interpreted in the light of some analysis.

The simulation results suggest that low mean values of packet end-to-end delays, from

generation at source to reception at destination, are obtained in the schedule-based scheme

even with small, but non-zero, window-sizes. Lower values of schedule-delays result in lower

mean values of packet intra-network delays, but do not necessarily change mean packet end-

to-end delays. In contrast with the low sensitivities of mean end-to-end delays to changes

in window-sizes for the schedule-based scheme, these sensitivities for conventional end-to-end

windowing, with first-come first-served transmission of packets at links, are observed to be

relatively large.

The simulator, SB, for the schedule-based scheme implements the network model of

Section 2.1 and the token usage algorithm of Figure 2.1, with the following additional assump-

tions.

a) Packets are generated for each session in an independent Poisson process.

b) All links have integer-valued slot start-times.

32

. j ° - - .° - . . • - * -
o

° " " - " - • . . ' . - " ' b -
"

c) The time taken by a session's real tokens (or, window-tokens), to return to the

session's source node after reaching its destination node, is a constant number of slots equal

to the number of links in the session's path.

d) When a packet belonging to a session is transmitted in a non-priority slot on a

subsequent link in the session's path, a real token is selected if possible, rather than a fictitious

token, to be carried by the packet over the link.

e) A cyclic order for the sessions sharing a link is defined for each link. When a slot

starts on a link it is first determined whether the slot is a non-priority slot, i.e., whether i) no

session has pre-assigned transmission priority in the slot, or ii) the session that has pre-assigned

transmission priority in the slot has no packet to transmit. Then, if the slot is a non-priority

slot, the cyclic order is used to search for a session that has both a packet to transmit and a

token for the packet to carry over the link. The search is started beginning with the session

in the cyclic order that follows the session for which a packet was transmitted in the previous

Uon-priority slot.

The simulator, FCFS, for the scheme that uses conventional end-to-end windowing

and first-come first-served transmission of packets at links, implements the network model of

Section 2.1, with the additional assumptions a),b),c) above, and f),g) below.

f) Window-tokens for a session, equal in number to the session's window-size, are

created at session set-up time, at the session's source node. A packet belonging to the session

is required to acquire a window-token at the source node in order to be enqueued in the first-

come first-served queue of packets at the first link in the session's path, and deposit the token

at the session's destination node upon reception there. Packets generated at the source node

wait there in a first-come first-served queue before joining the queue at the first link when

tokens become available.

g) At the ends of slots, packets are enqueued in the first-come first-served queues of

packets at links as follows. First, a packet just received over a link incoming to a node is

33

.....................................

enqueued at the next link, if any, in its path. The incoming links are considered here in
ascending order of the identity numbers of the links. Next, a window-token just returned to

a session's source node is used to enqueue a packet, if any, waiting to be enqueued at the

first link in its path. The session window-tokens are considered here in ascending order of the

identity numbers of the sessions.

FORTRAN programs for simulators SB and FCFS are listed in Appendix G. In the

following sections, simulation results are presented for three networks. The packet genera-

tion rate and the window-size for the s-th session in a network are denoted by A. and w° ,

respectively.

' ' 4.2 Network 1

Network 1 is shown in Figure 4.1. The window-sizes for all sessions are assumed equal

to infinity.

From the analysis in Appendix F of a slotted link with Poisson packet arrivals, it follows

that the expected packet waiting-time at link 1 for sessions 1 and 2 combined is 1/[2(1 - A, -

A2), for both simulators SB and FCFS. With A, = A2 = 0.49, this value is 25.

Suppose that A, = A2 = 0.5 + e > 0.5, and A3 < 0.5. Since A1 + A2 = 2A, = 2A 2 > 1,

packets for sessions 1 and 2 are always available for transmission on link 1. Thus, in simulator

. SB, packets for session 1 arrive at link 2 at the starts of slots for session I on link 2; the packet

arrivals constitute a deterministic process with rate 0.5. In simulator FCFS, since packets

for sessions 1 and 2 arrive at link 1 in Poisson processes with equal rates, the packets in

distinct positions in the queue at link 1 belong to session 1 with probability 0.5, independent

of one another. Hence, in simulator FCFS, packets for session 1 arrive at link 2 at the starts

of slots on link 2 in a Bernoulli process with rate 0.5. From the analysis in Appendix F of

a slotted link with Poisson arrivals combined with, first, deterministic arrivals, and, second,

Bernoulli arrivals, the expected packet waiting-time at link 2 for sessions 1 and 3 combined is

2A3 /(1 - 4 A3 2) for simulator SB, and 3A 3/(1 - 4 A3 2) for simulator FCFS. The waiting-time

34

Network:

2

Window-size ws cO, s1,2,3

Zero-wait schedule for simulator SB:

Links Time - Frame-time T=2
1: 1 2-. 2: .. , 1

U_. Figure 4.1 Network 1

35

4,%

for simulator SB is smaller because the arrival of packets for session 1 at link 2 is more regular.

With A3 = 0.25, this value is 2/3 for simulator SB and 1 for simulator FCFS. The value with

A3 = 0.49 is 24.75 for simulator SB and 37.12 for simulator FCFS. With link 1 loaded very

heavily and link 2 loaded less heavily, using A, = A2 = 0.499 and A3 = 0.25 for example, the

results above provide approximate values for the expected waiting-time at link 2 for sessio~ns 1

* and 3 combined. Such estimates are not a~s accurate when the links are loaded equally heavily

Using Al = A2 = As = 0.49, since the unused capacity 1 - (Al + A3) on link 2 is then 0.02, as

opposed to 0.01 when A, = A2 =0.5 and As = 0.49.

Simulation results are now presented.

a) Simulations with Al 1 \A2 = 0.499 and A\3 = 0.25.

Mean packet waiting-times for sessions at link 2

as function of simulator

Session 1 Session 3 1 and 3

SB 0.027 1.985 0.681

FCFS 0.872 1.247 0.997

The mean packet waiting-times for sessions 1 and 3 combined at link 2 agree with the corre-

sponding analytical results.

b) Simulations with A,1 A2 = A\3 = A.

Mean packet waiting-times in simulator SB

at links, and overall, as function of A

Link 1 Link 2 Overall

A = 0.49 25.14 19.12 29.51

A = 0.48 12.43 9.48 14.60

A =0.46 6.20 4.70 7.27

A = 0.42 3.12 2.32 3.62

%W 36

-'Iw

Mean packet waiting-times in simulator FCFS

at links, and overall, as function of A

Link 1 Link 2 Overall

A = 0.49 26.08 21.17 31.49

A = 0.48 12.46 10.48 15.29

A = 0.46 6.20 5.09 7.52

A = 0.42 3.12 2.45 3.71

* The data show that, with A =0.49, the mean packet waiting-times at link 2 in the simulators

are lower than the respective approximate analytical estimates. The overall mean packet

waiting-time for simulator FCFS is 6.5% higher than for simulator SB. Further, when A is

reduced to 0.42, this difference reduces to 2.5%. The simulation results indicate that, with

infinite window-sizes, the overall mean packet waiting-time is less for simulator SB than for

simulator FCFS. However, the difference is small except when links are loaded very close to

their capacities.

4.3 Network 2

Network 2 is shown in Figure 4.2. Simulator SB can guarantee throughput up to 0.5 to

each of the two sessions, irrespective of the session's window-size. A schedule with frame-time

equal to 2 may be used for this purpose, with 1 slot per frame allotted to each session on each

link in its path. Simulator FCFS cannot support a combined throughput of 1 when, for each

* - session, the window-size equals the number of links in the session's path. This is first shown

heuristically, and then demonstrated by simulations.

The round-trip time for a session's window-token is the time elapsed after the token is

acquired by a packet at the session's source node until the token next returns to the source

node. The maximum throughput possible with a single window-token is the reciprocal of its

minimum round-trip time. For session 1, since the window-size is 3 and the round-trip time

for a window-token is at least 6, the ratio of the window-size to the minimum round-trip time

N 37

-22

35
all

Figure 4.2 Network 2

38

is 0.5. Hence, the throughput for session 1 is at most 0.5. Similarly, the throughput for session

2 is at most 0.5.

Suppose that the combined throughput for sessions 1 and 2 equals 1. Then, every

slot on link 1 must be used. A packet (numbered 1) belonging to session 1 must 'sometimes'

be transmitted on link I immediately after a packet (numbered 2) belonging to session 2 is

* ~. transmitted on the link. Then, packets 1 and 2 are transmitted concurrently on links 3 and

4, respectively. Since link 3 has a lower identity number than link 4, packet 1 is transmitted

before packet 2 on link 5, and packet 2 must wait 1 time-unit at link 5. Hence, the round-

trip time for a window-token for session 2 must 'sometimes' exceed 8, and the throughput for

* session 2 must be less than 0.5. If links 3 and 4 had their identity numbers interchanged, then

packet 2 would have been transmitted before packet 1 on link 5, and the throughput for session

1 would have been less than 0.5. Thus, the combined throughput must be less than 1, and the

supposition above i otaitd

Simulation results are now presented for simulator YCFS, with window-sizes w1 3

and w24 as above and A, = A2 = A.

- Mean window-token round-trip time for sessions

as function of A

(and corresponding ratio of

window-size to mean round-Lrip time)

Session 1 Session 2

A = 0.42 6.30 (0.476) 9.48 (0.422)

A = 0.43 6.26 (0.479) 9.53 (0.420)

39

Mean packet end-to-end delays for sessions

from generation at source to reception at destination

as function of A

Session 1 Session 2

A = 0.42 8.84 251

A = 0.43 9.55 oo'

the throughput for session 2 is 0.42)

The data show that the mean window-token round-trip time for session 2 is significantly larger

than the minimum value 8, and that the ratio of the window-size to the mean round-trip time

is correspondingly less than 0.5. The simulation results indicate that simulator FCFS may not

be able to support session rates approaching the throughput-guarantees of simulator SB, even

if the window-size for each session is large enough to support the session's rate in the absence

of other sessions.

4.4 Network 3

Network 3 is shown in Figure 4.3. Mean packet end-to-end, pre-transmission, and

intra-network waiting-times for sessions are measured in the simulations for this network.

The end-to-end waiting-time, for a packet belonging to a session that has H links in its

path, is the difference between the end-to-end delay from generation at source to reception at

destination, and the H time-units used for transmission of the packet. The pre-transmission

v' waiting-time for the packet is the time from its generation to the start of its transmission

on the first link in the path. The intra-network waiting-time for the packet is the difference

between its end-to-end waiting-time and its pre-transmission waiting-time.

In simulator SB, if a session has window-size equal to zero, then it can transmit at

most its throughput-guarantee of 1 packet per frame-time T on the first link in its path. The

expected number of packets generated by the session in one frame-time is TA. From the analysis

.J.1 40

5

Network:

5 -

2 6 -

0 0 0 0 0 0 0 0--

1 2 3 4 5

4

X X =0*24, iI:..

Schedules for simulator SB:
Frame-time T=4

Zero -wait schedule: Maximum -wait schedule:
rime -~Time-

Links Links
1: 1 213 1: 1 12131

2: 4112.3 2: 12,13 4

3: 314.561 3: 5,6.314,
4: 6 4,5 4: 5,..
5: 1 161 5:6

Figure 4.3 Network 3

41

in Appendix F for a slotted link with Poisson arrivals, it follows that the expected packet pre-

transmission waiting-time for the session is T/[2(1- TA)], i.e., 50. When the zero-wait schedule

is used, since the session has window-size equal to zero, the packet intra-network waiting-time

for the session is zero and hence the expected packet end-to-end waiting-time also equals 50.

In both simulators SB and FCFS, when all window-sizes are infinite, the analysis in

Appendix F for a slotted link with Poisson arrivals also provides the following approximation

to the expected packet end-to-end waiting-time for a session. The approximation reduces the

network to a single slotted link with Poisson packet arrivals at rate p, where p denotes the

-~ '. maximum, over all links in the session's path, of the sum of the packet generation rates for

all sessions sharing a link. The expected packet end-to-end waiting-time for the session is

approximately 1/[2(1 - p)]. The value of p is 0.72 for sessions 1 and 2 (the network is reduced

to link 1 for these two sessions), and 0.96 for sessions 3,4,5, and 6 (the network is reduced to

link 3 for these four sessions). Correspondingly, the expected packet end-to-end waiting-time

is approximately 1.79 for sessions 1 and 2, and approximately 12.5 for sessions 3,4,5, and 6. It

can also be verified that the end-to-end waiting-time for session 1 is 1.79, that for session 2 is

greater than 1.79, and those for sessions 3,4,5, and 6 average to more than 12.5.

Simulation results are now presented. In each case, the network is simulated for one

million time-units.

a) Simulations using simulator SB, with the zero-wait schedule and with equal window-

size (1 or oo) for all sessions.

Mean packet end-to-end waiting-times for sessions

as function of window-size w

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

W = 1 2.14 3.22 15.00 15.58 15.01 14.60

w = 00 1.79 2.33 12.71 13.29 12.96 12.53

The data for window-sizes equal to infinity are close in value to their respective analytical

approximations. The value of the mean packet end-to-end waiting-time for a session when all

42

L4.

window-sizes are 1 is much closer to the corresponding value when all window-sizes are oc than

to the value 50, that results when the session's window-size is 0. This suggests that low values

of mean packet end-to-end delays are obtained for simulator SB even with small, but non-zero,

window-sizes.

b) Simulations with window-sizes for sessions scaled in proportion to their path lengths.

Let k, k - 1,2,3,4,oo, denote the window-size scale-factor, i.e., wi - k, w2 =

2k, w 3 = 3k, w4 =3k, ws = 2k and we=3k.

i) First, mean packet end-to-end waiting-times are presented, for simulator SB with

both the zero-walt and the maximum-wait schedules, and for simulator FCFS.

Mean packet end-to-end waiting-times for sessions

as function of k

in simulator SB with the zero-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k = 1 2.03 2.52 12.85 13.41 13.11 12.65

k = 2 1.82 2.38 12.72 13.29 12.96 12.53

k = 3 1.81 2.35 12.71 13.29 12.96 12.53

k = 4 1.80 2.34 12.71 13.29 12.96 12.53

k = co 1.79 2.33 12.71 13.29 12.96 12.53

43

Mean packet end-to-end waiting-times for sessions

as function of k

in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k = 1 2.03 2.48 13.39 13.33 12.73 12.30

k = 2 1.82 2.40 13.24 13.32 12.63 12.26

, k = 3 1.81 2.39 13.22 13.35 12.62 12.26

k = 4 1.80 2.39 13.22 13.36 12.61 12.26

k = c0 1.79 2.39 13.22 13.37 12.61 12.25

Mean packet end-to-end waiting-times for sessions

in simulator FCFS as function of/k

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k = 1 2.74 2.83 11.70 10.39 25.32 9.03

k = 2 1.86 2.35 11.58 10.05 20.82 8.80

k = 3 1.80 2.56 12.75 11.16 17.50 9.98

k = 4 1.78 2.64 13.50 11.90 15.25 10.77

k = oO 1.78 2.70 14.61 13.02 11.91 11.91

The preceding data suggest that the dependence of mean packet end-to-end waiting-

times on the positive integer window-size scale-factor is much weaker in simulator SB than in

simulator FCFS. Further, for simulator SB, the difference between a session's mean packet end-

to-end waiting-times with the zero-wait and the maximum-wait schedules is small. In simulator

FCFS, the differences between the values of the data for sessions 5 and 6 are suggestive of high

sensitivity to choice of window-size, as discussed further in part c).

I4

44

i) Next, mean packet intra-network and pre-transmission waiting-times are presented,

for simulator SB with both the zero-wait and the maximum-wait schedules, and for simulator

FCFS.

Mean packet intra-network waiting-times for sessions

as function of k

in simulator SB with the zero-wait schedule

Session 2 Session 3 Session 4 1, 5, and 6

k = 1 0.52 5.45 5.33 0

. k = 2 0.58 8.04 7.96 0

k = 3 0.58 9.30 9.32 0

k = 4 0.58 9.96 10.08 0

k = oo 0.57 10.93 11.41 0

Mean packet intra-network waiting-times for sessions

as function of k

in simulator SB with the maximum-wait schedule

Session 2 Session 3 Session 4 1,5, and 6

k = 1 0.54 7.05 6.36 0

k = 2 0.61 9.08 8.66 0

k = 3 0.62 10.08 9.86 0

k = 4 0.62 10.62 10.55 0

k = oo 0.63 11.44 11.74 0

a.4

45

, ,

Mean packet intra-network waiting-times for sessions

in simulator FCFS as function of k

Session 2 Session 3 Session 4 1, 5, and 6

k = 1 0.33 3.19 2.90 0

k = 2 0.71 7.86 7.11 0

-., k = 3 0.85 10.25 9.31 0

k =4 0.89 11.45 10.44 0

k = oo 0.92 12.84 11.78 0

Mean packet pre-transmission waiting-times for sessions

as function of k

in simulator SB with the zero-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k = 1 2.03 2.00 7.40 8.08 13.11 12.65

k I = 2 1.82 1.79 4.68 5.33 12.96 12.53

k = 3 1.81 1.77 3.41 3.97 12.96 12.53

k = 4 1.80 1.76 2.76 3.21 12.96 12.53

k = oo 1.79 1.76 1.78 1.88 12.96 12.53

Mean packet pre-transmission waiting-times for sessions

as function of k

in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

%4% k = 1 2.03 1.94 6.34 6.98 12.73 12.30

k = 2 1.82 1.79 4.17 4.66 12.63 12.26

Sk = 3 1.81 1.77 3.15 3.49 12.62 12.26

k = 4 1.80 1.76 2.60 2.81 12.61 12.25

k = oo 1.79 1.76 1.78 1.63 12.61 12.25

46

Mean packet pre-transmission waiting-times for sessions

in simulator FCFS as function of k

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k = 1 2.74 2.50 8.51 7.48 25.32 9.03

,k = 2 1.86 1.64 3.72 2.93 20.82 8.80

k = 3 1.80 1.71 2.49 1.85 17.50 9.98

k = 4 1.78 1.75 2.05 1.47 15.25 10.77

k = oo 1.78 1.78 1.78 1.24 11.91 11.91

The data show that the maximum-wait schedule indeed has the higher mean packet intra-

network waiting-times. However, it also has the lower mean packet pre-transmission waiting-

times, and its mean packet end-to-end waiting-times are essentially the same as a result. The

mean packet intra-network waiting-times for sessions 2,3, and 4 when k = 1, i.e., when the

window-size for each session equals the number of links in the session's path, are larger in

simulator SB than in simulator FCFS. This may be explained as follows. For the same set

"". -of window-sizes, the number of window-tokens in simulator FCFS equals the number of real

tokens in simulator SB. Since simulator SB has fictitious tokens in addition to real tokens, it is

possible for a larger number of packets to be present inside the network in simulator SB than

in simulator FCFS. The data indicate that this is indeed so for k = 1.

In simulator SB, a plausible explanation for the lower mean packet pre-transmission

waiting-times for the maximum-wait schedule is as follows. With the maximum-wait schedule,

at subsequent links in a session's path, packets belonging to the session have to wait longer for

priority-slots, and hence have greater opportunity for using non-priority slots and carrying real

tokens. This decreases the waiting-time for real tokens at the subsequent links, and increases

the availability of real tokens at the first link. Hence, the session can use more non-priority

slots on the first link, and its mean packet pre-transmission waiting-time is reduced. Further,

since the session uses fewer priority-slots on a subsequent link, it creates more non-priority

47

-i -. .. .'./..:.. .. '-. ., '. ,..' " .'""..' -'. . . ". .',. ''..' .'. '. .''.''.. . " .." "'.".,)"' " "i.".. ,. . .." ." . .",

slots on the link, and reduces the mean packet pre-transmission waiting-time for a session that

has the link as its first link.

c).Simulations with separate increases in window-sizes for sessions.

The starting window-sizes are set at wi = k, W 2 = 2k, to3 = 3k, W 4 = 3k, ws
-

2k, w6 = 3k, with the common window-size scale-factor k equal to 1 or 2. The window-size

, 2 for session 2 and, separately, the window-size w4 for session 4, are increased by the number

of links in the respective session's path.

i) First, mean packet end-to-end, intra-network, and pre-transmission waiting-times

are presented for simulator SB with both the zero-wait and the maximum-wait schedules, for

k= 1, i.e., (W,1 , w 3 , wI, w) = (1, 3, 2, 3).

Mean packet end-to-end waiting-times for sessions

s function of (W2 ,w4)

in simulator SB with the zero-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 2.52 12.85 13.41 13.11 12.65

(4,3) 2.01 2.46 12.85 13.40 13.11 12.65

(2,6) 2.03 2.51 12.84 13.35 13.09 12.64

Mean packet end-to-end waiting-times for sessions

as function of (W2 , W4)

in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 2.48 13.39 13.33 12.73 12.30

(4,3) 2.02 2.44 13.39 13.33 12.73 12.31

(2,6) 2.03 2.49 13.38 13.31 12.72 12.30

48

-. '

Mean packet intra-network waiting-times for sessions

as function of (w 2, W 4)

in simulator SB with the zero-wait schedule

Session 2 Session 3 Session 4 1, 5, and 6

(2,3) 0.52 5.45 5.33 0

-. (4,3) 0.61 5.46 5.33 0

.".. (2,6) 0.50 5.45 7.97 0

Mean packet intra-network waiting-times for sessions

as function of (2 , w 4)

in simulator SB with the maximum-wait schedule

Session 2 Session 3 Session 4 1, 5, and 6

(2,3) 0.54 7.05 6.36 0

(4,3) 0.59 7.05 6.36 0

(2,6) 0.55 7.04 8.67 0

Mean packet pre-transmission waiting-times for sessions

as function of (w2 , W')

in simulator SB with the zero-wait schedule

'- Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 2.00 7.40 8.08 13.11 12.65

(4,3) 2.01 1.85 7.39 8.07 13.11 12.65

(2,6) 2.03 2.01 7.40 5.38 13.09 12.64

49

Mean packet pre-transmission waiting-times for sessions

as function of (w 2 , w 4)

in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 1.94 6.34 6.98 12.73 12.30

(4,3) 2.02 1.85 6.34 6.97 12.73 12.31

(2,6) 2.03 1.93 6.34 4.65 12.72 12.30

ii) Next, mean packet end-to-end waiting-times are presented for simulator FCFS, first

for k= 1 and then for k = 2.

Mean packet end-to-end waiting-times for sessions

as function of (w 2 , W4)

in simulator FCFS for (w', W3, W5,uA) = (1,3,2,3)

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.74 2.83 11.70 10.39 25.32 9.03

(4,3) 3.35 1.69 12.54 10.53 24.99 8.90

(2,6) 2.68 3.41 15.79 4.38 25.92 10.08

Mean packet end-to-end waiting-times for sessions

as function Of (W2, W4)

in simulator FCFS for (w', IW,3 ',W5)We) = (2,6,4,6)

Session I Session 2 Session 3 Session 4 Session 5 Session 6

(4,6) 1.86 2.35 11.58 10.05 20.82 8.80

(6,6) 1.90 2.28 11.64 10.05 20.81 8.80
. (4,9) 1.85 2.47 12.23 8.53 21.46 9.03

50

As in the simulations with window-sizes for all sessions increased simulataneously in propor-

tion to their path-lengths, the data suggest that the sensitivity of a session's mean packet

end-to-end waiting-time to an increase in its window-size is much smaller in magnitude in

simulator SB than in simulator FCFS. Further, in simulator SB, the sensitivities of a session's

mean packet end-to-end, intra-network, and pre-transmission waiting-times to an increase in a

second session's window-size are much smaller in magnitude than the second session's respec-

a tive sensitivities to the same increase. For mean packet end-to-end waiting-times in simulator

FCFS, the two sets of sensitivities are often comparable in magnitude. This suggests that

proper choice of window-sizes in simulator FCFS is more difficult than in simulator SB.

51

Chapter 5.

Conclusion

An approach has been described for achieving packet throughput guarantees and packet

intra-network delay limits for sessions in a network, while permitting flexible usage of link

transmission capacities by the sessions. Sessions have packet throughput values up to which

throughputs are guaranteed. Packet generation for sessions at rates above these values can-

not always be supported, but, depending upon the level of inactivity of other sessions, may

sometimes be carried with proper choice of window-sizes.

The schedule-based scheme in which session throughput guarantees equal to I packet

per frame-time T are realized, has been explained in Chapter 2. The network model of Section

2.1 is used. The session's packet intra-network delay is upper-bounded by the sum of, first, the

session's schedule-delay and, second, the product wT of the session's window-size w and the

frame-time T. A similar upper bound can be obtained for the case of non-zero, but known and

fixed, link propagation or nodal switching times, and also for the case of different slot durations

that are required for links with different bit-speeds. The frame-time used on all links is the

same, in either case.

A throughput value equal to n/T, where n is an integer at most equal to T, can be

guaranteed to a session by assigning n priority-slots to the session in the frame on each link in

the session's path. An improved delay-bound, equal to the sum of a suitably-defined schedule-

delay with fw/nlT, would then appear to hold.

The network model of Section 2.1 conveys flow-control information to a session's source

from its destination using end-to-end windowing. Node-by-node windowing can also be used

for this purpose, as follows. Fictitious tokens for the session are defined as in Section 2.3, but

Nreal tokens for the session are associated with the nodes in the session's path. The token usage

algorithm of Figure 2.1 can be used, with the understanding that a real token carried by a

52

.' . , -

packet over a link is associated with the node that receives the link. A real token associated

with a node j in the session's path, is returned by node j to the node i preceding it in the path,

when a packet belonging to the session is transmitted from node j to the node k following it

in the path, using a real token associated with node k.

An alternative version of node-by-node windowing associates fictitious as well as real

tokens with nodes in the session's path. A token carried by a packet over a link is associated

with the node that receives the link. Fictitious tokens are used in priority-slots on the link, and

real tokens in non-priority slots. If a fictitious token associated with a node j in the session's

path is present at node j when a packet belonging to the session is transmitted from node

j in a priority-slot, then the fictitious token is discarded at node j. Otherwise, a real token

associated with node j is returned by node j to the node i preceding it in the path. When a

packet belonging to the session is transmitted from node j in a non-priority slot, either a real

token associated with node j is returned to the node i preceding it in the path, or a fictitious

token associated with node j and present there is discarded there.

Algorithms for scheduling priority-slots so as to obtain low values of session schedule-

delays have been presented in Chapter 3, following an NP-completeness proof showing that the

minimum-delay scheduling problem is algorithmically hard for general networks. The network

model of Section 2.1 is used, along with the assumption that the paths for all sessions in the

network are known.

Algorithm Atr.. constructs a schedule with sum of schedule-waits equal to zero, for

networks with tree link-precedence graphs. For such networks, this algorithm can be extended

so as to produce schedules that have waits between consecutive slots equal to known and fixed

link propagation or nodal switching times.

Algorithm Ahourit,€ is a scheduling heuristic that can be used for any network that

conforms to the model assumed. This algorithm reduces to Atr,, for tree link-precedence

graphs. An analysis of its worst-case performance has been presented, but its performance

for specific networks may need to be investigated further. Aeuristic can be extended to the

53

% ".

°... % , ,-' ., , .., .. , .. -,,. - -..,..., .. , .,.:- ,, .-- , .--Z 2:

non-zero link propagation or nodal switching time case, and also to the case of different slot

durations on different links. Worst-case analysis for these extensions is likely to be complicated.

The schedule may require improvement during the course of operation of the network,

as new sessions are set up and old ones disconnected. In order to reduce the time and com-

munication required, the schedule may be computed using a distributed algorithm, where

the computation and communication involving a link-precedence graph vertex are the joint

responsibility of the transmitting and receiving nodes for the corresponding link.

A distributed implementation of algorithm Ahuisi is possible. The distributed algo-

rithm, described by Gallager, Humblet,. and Spira [111 would be used to compute a maximum-
weight spanning tree and corresponding root vertex for each link-precedence graph component.

Then, links would be scheduled using communication outwards along the link-precedence trees

starting from the roots.

In order to improve the schedule, links may be rescheduled using an optimal assignment

algorithm, holding fixed the priority-slot assignments on neighbouring links. The distribution

of rescheduling opportunities among links can be done in the manner of the solution described

by Chandy and Misra [6] for the distributed dining philosophers problem.

Packet intra-network delay limits may be violated if links are rescheduled while packets

are in transit in the network, or if link speeds drift, and also if links are unreliable and packets
have to be retransmitted. For example, the rate at which fictitious tokens for a session are

carried over the first link in a session's path may not be matched by the fictitious token rate on

subsequent links if these links are unreliable. In such a case, both real and fictitious tokens are

V. backlogged at these links. The fictitious token backlog can be viewed as an effective increase

in the real token window-size, and raises the packet intra-network delay.

A When packets belonging to a session incur excessive intra-network delay, the session's

source node may reduce the session's window-size by holding back real tokens. The window-size

6, 54

- - - -- - - -.

may be increased when the delay decreases. The source node may also relieve excess intra-

network delay for the session by temporarily blocking transmission of the session's packets on

the first link in the session's path. Packet intra-network delay measurements for the session

would be required, and the source node would need to be appropriately informed.

Mean packet delays observed in simulations of three networks, with session packets
generated in Poisson processes at known rates that are less than the throughput guarantees,

have been presented in Chapter 4. The simulator for the schedule-based scheme implements

the network model of Section 2.1 and the token usage algorithm of Figure 2.1, with additional

assumptions as listed in Section 4.1. The limited simulations suggest that, for Poisson packet

generation at session rates less than throughput guarantees, low mean values of packet end-

to-end delays, relatively insensitive to choice of window-sizes, are obtained even at small but

non-zero window-sizes.

This hypothesis is conditional on the additional assumptions referred to above, and

the extent of the dependence may need investigation. In particular, assumption (e), that

round-robin discipline is used to allocate non-priority slots, may be important because this

discipline should be fairer than first-come first-served discipline in offering opportunity of

packet transmission to sessions (Hahne [171). It is also likely that assumption (c), the use

of fixed real token return times that assume zero waits for the tokens on their return paths

in the network, reduces mean packet end-to-end delays. As mentioned in Section 4.4(b)(ii),

assumption (d), the use of real tokens if possible rather than fictitious tokens in non-priority

slots on subsequent links in the paths for sessions, may account for the lower mean packet

pre-transmission waiting-times observed with schedules that have higher schedule-delays.

Large queueing delays are expected when session packets are generated at Poisson time-

instants in batches, with geometric batch-size distribution for example (Fuchs and Jackson [8],

Kekre, Saxena and Khalid [22]). Larger window-sizes may be required in simulations with

such packet generation processes. Simulations with sets of session packet generation rates that

exceed throughput guarantees but are feasible, may provide additional insight into the choice of

55

window-sizes. Simulations of schedule-based schemes using node-by-node windowing, instead

of end-to-end windowing, may also provide further insight.

.%.5

'4

"358

Appendix A

Proof of Upper Bound, of Section 2.4, for Packet Intra-Network Delay

Assume that the fictitious tokens for the session are carried in first-come first-served

order over each link in the session's path, and that the first fictitious token has no fictitious

tokens ahead of it in the path. Let tf,A, f 1, 1 <_ h <_ H, denote the time at which a packet

starts being transmitted on the h-th link carrying the f-th fictitious token. Priority-slots for

the session start on the h-th link in the path, 1 < h < H, at times at, + nT, for all integer values

n. Since fictitious tokens are carried over the first link in priority-slots only, let the integer n$

be defined by

tf, = a, + n1 T, f + 1, n ! > nf + 1. (A.1)

First, it is shown that the time tl,h, 1 < h < H, at which the first fictitious token is

carried over the h-th link, satisfies

tl,h _ ah + nIT, 1 < h _< H. (A.2)

From A.1, t1,1 a 1 + nIT. For 2 < h _5 H, assume, for purposes of induction, that tlh-1 <

oa-1 + nIT. A priority-slot starts on the h-th link at time ah + nIT. Since ah-I + nIT + 1 <

ah + nIT, this priority-slot starts after the first fictitious token has been carried over the h - 1-

th link. A fictitious token is used, if available, in such a slot. Therefore, tlh 5 0a + nIT. Thus,

A.2 follows by induction.

Then, as shown below, the time tfIh, f 1, 1 :5 h < H, at which the f-th fictitious

token is carried over the h-th link, satisfies

tf,hS),h + nfT, >1 1< h < H. (A.3)

V i For f 2t 2 and 2 < h <_ H, assume, for purposes of induction, that tf-1,h a Oh + n i-iT

and tf,h_, _< h-l + nfT. A priority-slot starts on the h-th link at time ah -r nfT. Since

1h + nfIT < ah + nfT and ah.i + nfT + 1 :5 ah + nfT, this priority-slot starts after

57

the f - 1-th and f-th fictitious tokens have been carried over the h-th and h - 1-th links,

respectively, and it follows that tf,h _ a, + nfT. Since A.1 and A.2 hold, A.3 follows by

induction.

Now, assume that a packet P starts being transmitted on the first link at time T.

Further, define F by tp,j < T < tp+1,1, i.e., at time r, packet P either carries the F-th

fictitious token over the first link, or carries a real token over the link, in between the times at

which the F-th and F + 1-th fictitious tokens are carried over the link.

Let 11,h, 2 :< h < H, denote the set of fictitious tokens that, at time r + 1, have

been carried over the first link and are subsequently to be carried over the h-th link, i.e.,

Li=, {f11 < f 5 F, tf,h _ r + 1}, 2 _ h 5 H. From A.3, if a + npT < r + 1, then

tF.,h < r + 1, and Iflaj = 0. Similarly, if or + nfT 2 r + 1, then Ifli, is at most equal

to the number of values off, 1 5f :5 F, for which ah + nfT > r + 1; since r+1 =

a, + [nF-(o'h+nFT - r-1)IT]T, r+ 1 5 at,+ [np - (o+nFT - r-1)TJIT < r+ 1+T,

and hence jflj -5 1 + L(at, + nFT -r - 1)ITJ. Thus, for 2 < h <H,

:'" ~ia[< 1 + ,otherwise.*' Ifh r ri, fC:T r1 A.4)

Number the packets for the session that are in the network at time r + 1, assigning the

serial number 1 to packet P, the next higher serial number to the next most recent packet to

enter the network, and so on. Let ph, 2 < h < H, denote the highest serial number among the

packets that, at time r + 1, are subsequently to start being transmitted on the h-th link. Since

the total number of real tokens for the session is the window-size w, pl, 5 w+ Cl1,1, 2 < h < H.

- Then, from A.4, ph 5 WA, 2 < h :< H, where xf, is defined as

W + otherwise.

Packets are transmitted in order of decreasing serial number at each link. Let up,,, 2 <

,,. h _ H, ph p 1, denote the time at which packet number p starts being transmitted on

58

,V.., ..'....'........,...,"."-..,.....-.,".-".............".,....-.... ,.., -. , .".. ,-.'-.".-., '.'.'.,>

4,

the h-th link. The intra-network delay for the packet P, numbered 1, is ul, - r + 1, which is

shown below to be upper-bounded by (ag - 0i + 1) + wT.

Let the integer n be defined by

r+1 _< r3+nT < r + 1+T. (A.6)

Then, the first priority-slot for the session at or after time r + 1 on the second link starts at

time o2 + nT. Since o1 + nriT :_ r by definition of F, a2 + npT _5 r + T, and it follows from

A.6 that n _> np. Further, from A.6,

a3 T >F r + l' ifn=nF; (A.7)
S. CA.7)'- <r+l, 'ifn>n.

Let s.,h, 2 < h <_ H, zp _> z > 1, be defined as

{ah + nT + wT - (z - 1)T, if n =nF;Sx,x, ohrt + nT + (w - 1)T - (z - 1)T, if n> np. (A.8)

Then, a priority-slot for the session starts on the h-th link at each of the times 3.,h-

First, it is shown that packet number p, Ph > p _ Ph-, + 1, 2 < h < H, which at time

r + 1 is to be subsequently transmitted first on the h-th link, starts being so transmitted at

time up,h that satisfies

-' up,h _5 sp,h, 2 _5 h _5 H, ph 2! p 2! ph-, + 1, (A.9)

4
where p, is defined as 0.

, A priority-slot starts on the h-th link, 2 < h _< H, at time 8ph. Since ph < zh, Sp*,h 2!

,x,s, where a2 ,, 2! r+1, as shown below. Ifn = nF, then, from A.7, A.5, and A.8, for2 <h <

H, sx, = Uh+ nFT+wT- (w+ L° ' '.r-z 1 J)T 2 r+ 1. If n > nF, then, from A.7, there is

an integer H', 2_5 H'< H, such thatah+nFT <r+lfor2< h< H' and ah + n FT > r+1

for H'+1 :5 h 5 H. FromA.5 andA.8, for 2< h < H', s,,-= ah+nT 2 r+1;and for

H'+ 1 5 h 5 H, oh , + = +T+(w- 1)T-(w+ L °t z'j-r-i)T ? r+1+(-np-)T >

r + 1. Thus, a priority-slot starts on the h-th link at time ap,h, at or after time r + 1, and

59

'-4

it follows that up, _< sp,,h. For ph - 1 > P -> Ph-, + 1, assume, for purposes of induction,

that up+l, :5 sp+ih. A priority-slot starts on the h-th link at time sp,h. Since sp+i,h < sp,h,

the priority-slot starts after packet number p + I has been transmitted on the h-th link, and

it follows that up,h < sp,h. Thus, A.9 follows by induction.

Then, as shown below, the time up,h, 2 <h < H, ph > p > 1, at which packet number

p starts being transmitted on the h-th link, satisfies

'i ""up,& _5 8p,h, 2 _5 h <_ H, ph >: p >_ I (A. 10)

For 3 < h < H and Ph-i 'a P _ 1, assume, for purposes of induction, that up,h-1 < Sp,h-1

and (for p+ 1 < ph) up+i ,h 5 sp+i,h. A priority-slot starts on the h-th link at time sp,h. Since

*pAi + 1 :5 *p,h and (for p + 1 < ph) p+i,h < *p,h, this priority-slot starts after packet

* .number p has been communicated over the h - 1-th link and (for p + 1 5 ph) packet number

p + 1 has been communicated over the h-th link. It follows that uph 5 Sp,h. Since A.9 holds,

A.10 follows by induction.

From A.10, the intra-network delay, u1,H - r + 1, for packet P, is at most ',s - r + 1.

If n = np, then, since a, + n-T < r by definition of F, and from A.8, s*,H - r + 1 =

(ah - al + 1) + wT + (a, + nFT - r) 5 (OH - a, + 1) + wT. If n> nF, then, from A.8 and

A.6, s1,H -r+ 1 = (aH -ff 2 +1)+wT+(d!2+nT-T-r) < (oH - +1)+wT. Thus, the

intra-network delay upper bound, (oH - or + 1) + wT, of Section 2.4, is proved.

.v -. '

60

Nt4

Appendix B

A Procedure for Transforming from Non-Integer to Integer Schedules

Without Increasing the Sum of Schedule-Delays

The procedure referred to in Section 3.1 is presented in this appendix.

Let z9 denote the start-time of the i-th priority-slot in the given non-integer schedule.

Assume that the priority-slots are numbered in non-decreasing order of eo = - [x~j, i.e.,

0 < e9 for i < j. The sum of schedule-delays for the schedule can be expressed as Z, cE ° + c.

Here, ci is -1 or 1 if the i-th priority-slot is on the first or last link, respectively, in the

corresponding session's path, and the path has more than 1 link; ci is 0 otherwise; and c is an

integer constant.

Consider the following iterative procedure, starting with k - 0:

, 6,, if E, cje' > 0;
e , + (1 - , otherwise;

where

k 0, ife#---Oorl;
1, ifO < 1;

6 ,,-- min e,; 6,.162 max e.

The e' have the following properties: 0 e# < 1; c E.fori<j;fork>1, cie +c<

i', cIE- + c and E, e' < " , e - - 1. The procedure terminates at k = K where, for each

i, eis0or1.

7Let T denote the integer frame-time for the network. Define z, = Lzoj + er, 1,,, =

z + mT, and z, 9 + +mT, where m is an integer. Then, y,.,,, = y9 - z9 + z, =

Lm J I + z = tij + ef, and hence Lomj : irn [.. j +1. Since oi : Lymj

and LYnJ < YI,n, ifym + 1 < y, and L °, J + 1 < y,.J - 1, then y,,m + 1 5 Y,.. Since

C9 _i,. - L OMJ, if °m 1 <0 and Ly,.J + 1 = L J, then ° < c9; hence, E < cK

61

and, since ,= i,,J + e, y,, + 1 < yi.,. Thus, ifo-m 1i,,m + 1 y, then /i,, + 1 < yj,,.

Furthermore, E" cif? + c :5 r, ciO° + c. It follows that there exists an integer schedule for

which xi is the start-time of the i-th slot, and the sum of schedule-delays is not greater than

that for the original non-integer schedule.

,62

4.D ..

S-.5,-

V.

5:'.

.r

..".-.

Appendix C

Corollaries of the NP-Completeness Result of Theorem 3.1

Consider a polynomial-time algorithm A for computing integer schedules. Let A(I)

denote the sum of schedule-waits for the schedule computed by algorithm A for a network in-

stance I, and let OPT(I) denote the minimum sum of schedule-waits for the instance. Assume

that there are no polynomial-time algorithms for solving NP-complete problems. Then, the

following results hold.

a) For any fixed positive integer K, there is an instance I such that A(I) -OPT(I) > K.

This is shown as follows.

Suppose, to the contrary, that A(I) - OPT(I) < K for all instances I. Consider the

instance I' that consists of K+1 copies of an instance I. Then OPT(I') = (K+1)OPT(t). The

schedule computed by algorithm A for I' consists of a schedule a, for each copy c of I. Since

A(I) - OPT(I') _< K, FK€= [sum of schedule - waits for o, - OPT(I) _< K, and therefore

for at least one value of c the sum of schedule-waits for a, must be OPT(I). This provides a

polynomial-time algorithm for solving the 'Network 3-Periodic Zero-Wait Scheduling' problem,

and Theorem 3.1 is contradicted. Hence, result a) is true.

b) For any fixed positive integer R, there is an instance I such that A(I) > R OPT(I).

This is shown as follows.

Suppose, to the contrary, that A(I) :5 R OPT(I) for all instances I. Then, OPT(I) = 0

implies that A(I) = 0. If A(I) = 0 then OPT(I) = 0. Therefore, OPT(I) is zero if, and only

if, A(t) is zero. This provides a. polynomial-time algorithm for solving the 'Network 3-Periodic

Zero-Wait Scheduling' problem, and Theorem 3.1 is contradicted. Hence, result b) holds.

c) For any fixed positive integers K and R, there is an instance I such that OPT(I) K

and A(I) > R OPT(I). This is shown as follows.

63

,-f -1" A.A * &.!,.AS;---

-- --------

Suppose, to the contrary, that for all instances I such that OPT(I) > K, A(I) <

R OPT(I). Consider an instance I" such that OPT(I") >_ K (I" may consist of copies of

any instance I.. such that OPT(I") > 1). Consider the instance I' that consists of I" and

R OPT(I") copies of an instance I. Then, OPT(I') >_ OPT(I") > K and, hence, A(I')

R OPT(I'). The schedule computed by algorithm A for I' consists of a schedule for I" and

a schedule o, for each copy c of I. Suppose OPT(I) = 0. Then OPT(I') = OPT(I") and,

hence, A(I') :_ R OPT(I"). Then, since OPT(I") >. K, K+2.=P Tsum of schedule-

waits for a,) < R OPT(I"). Therefore, for at least one value of c the sum of schedule-waits in

o, must be 0. This provides a polynomial-time algorithm for solving the 'Network 3-Periodic

Zero-Wait Scheduling' problem, and Theorem 3.1 is contradicted. Hence, result c) holds.
"4

*

.4,6

'.%

v-.4

,Y4.

V 6

:4:.., . 4 . . h, . . .
• ?.. ,.' ., .: : ,,,.; ,..,... .:= -,,::-;-x.,.:.-,. J ---... , ..: :';.:::% ?.-:":'....'': .,, ':'

Appendix D

The Scheduling Algorithm, of Section 3.3,

for Networks with Triangular Link-Precedence Graphs

Figure D.1 shows the type of network for which the link-precedence graph is a triangle.

The number of sessions sharing any link is assumed to be at most equal to the frame-time

T. The following scheduling algorithm constructs a minimum-wait integer schedule for such a

network in linear-time. The minimum sum of schedule-waits is at most 1. Priority-slots are

scheduled in the three link-frames, first for the two-link ab-, be., and ca-type sessions, and

then for the single-link sessions.

Let w denote the weight of arc (ij) in the link-precedence graph, i.e., wi,j is the

number of ij-type two-link sessions using the i-th and j-th links. Assume, without loss of

generality, that w.,b _< wb,, and w.,, _ w,,,. Let ni = w,,b, n2 = min(wb,,, w ,,) - n, and

fn3 = max(w. , w,,.) - (n, +n2). Several cases are defined below based on the values of n,, n2,

and ns. The sum of schedule-waits for the schedule that results is 0, except in case E(b) where

t is 1.

Case A) n3 = 0:

Schedule priority-slots for nj each of ab-, be-, and ca-type sessions, and n2 more each

of be- and ca-type sessions, as follows.

Link

a: ab ca ab ca ca ... ca

b: bc ab be ab be ... bc

c: ca be ca bc ca be ca be

Ist lst n1 th n1 th lst Ist n2 th n2th

65
- **** o* * *

'm ~ v; ~ .V . '\- 2 . .. 7- ' 7 7~ ,, .xX.

Network:
ab-type session

b

ca-type session bc-type session

Link-precedence graph:

Wo,b > 0
a b

WC10 >0 b,C >0

Figure D.1 Network and Link-Precedence Graph for Appendix D

88

SO

Case B) ns 1,n 2 and w6,, >w :

Continue the schedule of case A as follows (in the sequel, a '*' indicates a priority-slot

that had been scheduled previously, at either the same or a different time-instant in the frame).

Link

a: ca*

b: be be be bc

C: ca* be* be be bc

. n2 th n 2 th lSt 2nd n3 th

Case C) n3 1, n 2 > 1, and w,, > Wb,:

Modify and continue the schedule of case A as follows.

Link

a: ca * ca ea ca

6: bc*e

C: ca* ca ca ca be

lst 2nd nsth

(Priority-slots for the last of the n2 bc-type sessions have been repositioned.)

Case D) n3 ? 2, n2 = 0 (in the sequel, w6,, > w,,,, and the construction to be used if

.. ,. > wb,, is similar to that shown for wb,, > We',):

Modify and continue the schedule of case A as follows.

Link

a: ca ab*

b: c* be bc be ab*

m e: Ca' be be be be

n1 t& n1 th 1st 2nd A

67

-4...........

(Priority-slots for the last of the n, ab-type sessions have been repositioned.)

Case E) n3 = 1, nt = 0

Sub-case a) T > 2n, + 2:

Continue the schedule of case A as follows.

Link

a: ab • ca•

6: be abC be

C: ca* beC be

nth nth nath

Sub-case b) n, = 1,4,7, 10,..., and T = 2n, + 1 (= 3,9,15,21,...)

Modify and continue the schedule of case A as follows.

Link

a: ab • ca*

b: be be ab*

C: ca be C•

(A priority-slot for the last of the n, ab-type sessions has been repositioned. The sum of

schedule-waits is 1.)

Sub-case c) n, = 2,5,8,11,..., and T = 2n, + 1 (= 5, 11,17,23,...

The set of six columns marked by '*'-s below is included in the link-frames (n, - 2)/3

times.

Link

a: ca ca ab ab ab ca ... ca ca ab ab

b: be be be ab ab ab ... be be be ab ab

C: ca be be be ca ca ... ca be bc be ca

68

a.. . ? Z Z,

Sub-case d) n, = 3,6,9,12,..., and T = 2n, + 1 (= 7,13,19,25,...):

The set of six columns marked by '*'-s below is included in the link-frames (n, - 3)/3

times.

Link

a: ab ob ab ca ca ca ... ab ab ab Ca Ca ca

b: be ab ab ab be be ... be ab ab ab be be be

C: be be ea ca ca be ... be be co ca ca bc be

69

4 . / -. # 4- .*,

- 4--- ! ~ ~

Appendix E

Proof of Inequality 3.6

Priority-slots are scheduled on the 1-th link at iteration I in step 4 of algorithm Ahouistc

using an assignment algorithm that minimizes '.,A, W-. In this appendix, an assignment

algorithm is described for scheduling these priority-slots at integer time-instants so that

p. eaa-

A session is defined as being in transit on the l-th link if i) for link numbers i and

j, the session has the i-th, 1-th, and j-th links as consecutive links in its path, i.e., the i-th

link precedes and the j-th link follows the l-th link in the session's path, and ii) (i, I)CAJ and

(i,j)eA1 , i.e., both the i-th and j-th links have already been scheduled. Link-frames repeat at

intervals of the frame-time T. Hence, for each of the session's priority-slots on the i-th link,

there correspond i) a priority-slot to be scheduled for the session on the I-th link, starting from

0 to T - 1 time-units after the finish of the slot on the i-th link, and ii) a priority-slot for the

session on the j-th link, where the integer length S of the gap between the finish of the slot on

the i-th link and the start of the slot on the j-th link satisfies the condition 1 < S < T. The

amount of wait that the session contributes to 2-,A,, W" is the sum of, first, the modulo-T

wait between the finish of its slot on the i-th link and the start of its slot on the l-th link, and,

second, the modulo-T wait between the finish of its slot on the 1-th link and the start of its

* slot on the j-th link. If the session 's priority-slot on the I-th link is scheduled so as to lie in the

, gap defined above, then the contributed wait is the difference, S - 1, between the gap-length

S and the unit duration of the slot. Otherwise, the session's priority-slot on the l-th link is

scheduled so as to lie outside the gap of length S, but so as to finish within T - S time-units

after the end of the gap; then, since a priority-slot starts on the j-th link a frame-time T after

the end of the gap, the session's contributed wait is T + S - 1.

70

A session is defined as finishing (respectively, starting) on the I-th link if i) for link

number i (respectively, j), the session has the i-th and l-th links (respectively, the I-th and j-

th links) as consecutive links in its path, ii) (i, l)eA (respectively, (1, j)cAj), and iii) the session

is not in transit on the l-th link. vertex. The l-th link is preceded (respectively, followed) in the

session's path by the i-th (respectively, j-th) link. For each of the session's priority-slots on the

i-th (respectively, j-th) link, there corresponds a priority-slot to be scheduled for the session

on the L-th link, starting (respectively, finishing) from 0 to T - 1 time-units after (respectively,

before) the finish (respectively, start) of the slot on the i-th (respectively, j-th) link. Thus, the

session's contributed wait is an integer ranging from 0 to T - 1.

First, priority-slots for sessions that are in transit or that start or finish on the l-th link

are scheduled in the frame on the link at integer time-instants, using the assignment algorithm

to be described. Next, priority-slots for all other sessions that use the link are scheduled at

integer time-instants in the frame that are as yet unassigned.

Let n ' denote the number of sessions that are in transit, and n'f the number that
start or finish, on the I-th link. Then, n'f + nt' < T and E.A, w. = n'f + 2ntr.

Case A) Assume that nt" = 0.

Schedule priority-slots for the n° f start/finish sessions so that their individual con-

tributed waits are upper-bounded by 0,1,2,..., n*f - 1, respectively.

Then,

n#1_1 n=f (2 1 T (T 1) -(- 1.

GEAI i-O scA

Case B) Assume that ne" > 0.

Let K denote the number of distinct gap-length values among the sessions in transit,

and let nk, 1 < k < K, denote the number of sessions in transit that have gap-length SI,,

71

where Sj < S for 1: i < j_5 K. Then, " =1 ni n" . Let

Mk =mn(Sk- minhG)1:k5K. (E.1)

Then '=, i 5 Sk, 1 < k < K.

Sub-case B(I) Assume, further, that n 1f < minl<k (Sk - in).

Then, nf = 0 if mh; < ni. for at least one value of k. Consider the following scheduling

algorithm.

Step 1) If mh; = ni for all values of k, then schedule priority-slots for the nf start/finish

sessions so that their individual contributed waits are upper-bounded by 0,1,2,... ,nf - 1,

respectively.

Step 2) For each value of k from I to K, in increasing order of k, schedule priority-slots

for mj of the nk transit sessions that have gap-length Sk within their respective gaps.

,.-. This can be done since, when m (< m) of the m/, slots have been scheduled, the total

number of slots that have been scheduled is

k-I / k -

of + inE n=S,-(ik-in 5

n i = + m = slots will have been scheduled by the end of this step.

Step 3) If there is a value ki, 1 < k, < K, such that rn, < nAt and min = ni for

k, + 1 5 k < K, then do the following for each value of k from 1 to k1 . Schedule priority-slots

for the remaining nA; - inf transit sessions that have gap-length SA;, at integer time-instants in

the frame that are as yet unassigned.

All n'f + nt" slots will have been scheduled by the end of this step.

Now, ',.A, W- is upper-bounded as follows.

72

• , . , ,, . .",LU, . , , , ,, . ,. '. . . , . , • . , • ,

Sub-case B(I)(a) Assume, also, that mk = nk for all values of k, 1 k < K.

lq,-1 IC

atAl i=O k=1

2 h=1

S(n~ 2n)T) = (T2~I z WA .

Sub-case B(I)(b) Assume, instead, that Mk, < nk, and mA; = nk for k, + 1 : k < K.
_ - k I

From E.1, mk= S , - r, in, or mi = St,; hence, n "f = 0.

K hi

agAj k=1 k=1

K

, Z n k(Sk - 1) + L[mh;kSA - 1) + (ni, - mnk)(T + Sk, - 1)]. (E.2)
k=k+l k=

Now,

,ki kt /I k

Z:r[.(sk - 1) + (n, - ink)(T + Sh - 1)] = (T - 1) L ni + L nh;Sk - T L Mk
.=1 k=1 k=1 ,=1

= (T - 1) F, k + E_, ;s - TS,

k=1 k=1
hi k

:5 (T- -1)En,- T-E kS (E.3)

Dropping the negative term in E.3, substituting the result in E.2, and then upper-bounding

Sh -1 by T- 1,

&dA, k=1 2 aAg

Sub-case B(II) Assume, instead, that n /f> min<h<x(Sh: - =j ").

Let So = 0, ko = 0, and

ki = max arg min - j 1, (E.4)

. =73

-h"ee S -) r d Sr- M, <

where S: - =4 m, < n' . < nink,+1<k<K(Sk - mi) (or k = K and<
nof.).

Step 1) For each value of j from 1 to J, in increasing order of j, do the following.

l(i) Schedule priority-slots for Ski - - 'n+ start/finish sessions so that

their individual contributed waits are upper-bounded by Sk-,, Sky-I + 1, Si, +2,..., Ski -

Z ,=k,_, +, r - 1, respectively.

1(ii) For each value of k from kj- I + i to k., in increasing order of k, schedule priority-

slots for mM transit sessions that have gap-length Sk within their respective gaps.

It can be verified by induction that Sk - k r,, siots wili have been scheduled

by the end of sub-step 1(i). The scheuuling in sub-ster 1(ii) can be done since, when m (< mk)

of the mk slots have been scheduled, the total number of slots that , ave been scheduled is

SkiZ- W i)+ j mi+m<(S&- ,i+ r +M

= S - (mA - -n) < Sk.

Adding the ' -,_+ mi slots scheduled in sub-step 1(ii) to those scheduled in sub-step 1(i),

a total of SM, slots will have been scheduled by the end of sub-step 1(ii).

S =z m slots for transit sessions and Sk., - mj slots for start/finish sessions will

have been scheduled by the end of this step.

Step 2) Schedule priority-slots for the remaining n f - (Sh, - mi) sLart/finish

sessions so that their individual contributed waits are upper-bounded by SA;,, Sk, + 1, ,, +

2,..., n 1 + =mr - 1, respectively.

All n'j start/finish slots will have been scheduled by the end of this step.

Step 3) For each value of k from k, + 1 to K, in increasing order of k, schedule priority-

slots for mi, transit sessions that have gap-length S,, within their respective gaps.

74

This can be done since, when m (< mk) of the Mk slots have been scheduled, the total

number of slots that have been scheduled is

+tf - m r i + mM
i=1 i=1 i=1

= sk - (ink - m) < Sk.

n'! + EK, m; slots will have been scheduled by the end of this step.

Step 4) For each value of k from 1 to K, schedule priority-slots for the remaining

nk - mk transit sessions that have gap-length Sk at integer time-instants in the frame that are

as yet unassigned.

All n'f + n " slots will have been scheduled by the end of this step.

Now, ".,A, W. is upper-bounded as follows.

Sub-case B(Il)(a) Assume, also, that mk = nk for all values of k, 1 :< k < K.

. [Ski,, + (Sk,, + 1) + (Ski, + 2) +... + Ski - , -
, a ., : 1 ik-L 1

+- nk(sk- 1]

j + [s, +(S,, +l)+ (S,, +2)+..+ +n'!+ jn, -

+ E n (SI,- 1). (B.5)
s=k8, +1

The four terms in E.5 correspond to the waits contributed by substep 1(i), substep 1(ii), step

2, and step 3, respectively.

For 1:5j:5 J,

ky k 7l n k(Sk- 1)_<5 (Ski- 1) nk.

. 75

[(ki - n + (Sky- ",+1) +...+(S -1)]

+ - h- 1) + hi-2) +...+0 .(E.6)

This can be seen by adding corresponding terms of the two bracketed expressions above.

The first line in E.5 is a sum of increasing integers, with consecutive integers from Ski,._

to Ski - i+1 n, - 1 and then a gap between Sb, -Z i=,,_,+1 ni - 1 and Sk*, for each

value of j. The first bracketed expression in E.6 fills in the gap for the corresponding value of

j. Thus, from E.5 and E.6,

W.< I+2+.-.+ nf+ Lnk -I1

at~b, +=1

-! : + [12--,,+ nk -I

K

(o.-f, +2

+ n

j=1 k=ki-+

KK

kb~k,+1
S(fb)-(- n-) n= -) +-(Tz- 1) , nk

S.7.

,' , " . .. r.,,. o ., .. ,, .. ', .. . ,, . ". . , - . • .- % .. . - ,, 76 . .

Sub-case B(II)(b) Assume, instead, that mk, < nk,.

From E., m = ,- -=m= , or = Sk,; hence, from E.4, mk, = nk for

-.", k, + 1 < k < K. Thus, for 1j = in step 1, no start/finish sessions are scheduled, and

e~ki
W.' _< k.(sk-1

-Y k #

+ E2 [4~j_ + (si, +1) + (Ski-, +2) +- + Ski L ni -1

j=2 k=ki,+l

+1Z*" + [sh,+(sk,+l)+(sk,+2)+...+ n' + M,-
K k,

+ nk(Ss - 1) + L(nA - m,)(T + s, - 1). (E.7)

k=Is,-I- k=1

Combining the first and last terms by E.3, and combining the second, third, and fourth terms

with the help of E.6,

ZW.:(T-1)Znk_ - '..n sic,
" A! k=1 =1

[Sk 5'+ (gk, +1) +..+ (nf+ k- M -
k=1;m.- ,I'

1+2... A - 1I

j=3 [k=k_,+ l

+ E nk(S,-1). (E.8)

Since L=in1 , = S,, and mk = nk for k1 + 1 < k < ki,

Irv-~

ks=1

-" (" + n) s$, + 0+ 1.+...+ nf 1) n.-1 (E.9)
,.'.k=k,+l 10 k=ki +1

77

This can be seen by adding Sk to each of the terms in the last bracketed expression above.

Combining the second and third terms in E.8 with the help of E.9,pW_ (T(- 1) n -j - nOf - L sni-,
S (hA k=(T

+ 1+2+..+ nef+ E nk-1k=kil

+E Ekk~+ nA; 2

K+ 2: nk(sk- 1).
h,=k,+1

i Dropping the negative term in the above expression, and upper-bounding the third, fourth,

and fifth terms,

W.' (T'-l1) L k+ (s+ L (n) (T"" aAl k=l kmkt +I

,. k=kl+l (2k=k+l

78

khi .~

. '..

Appendix F

The Expected Waiting-Times at a Slotted Link

for Some Packet Arrival Processes

The analysis presented here is referred to in Chapter 4.

Assume that all slots are of unit duration, and that each packet requires one slot for

transmission on the link. Three packet arrival processes are considered.

a) Poisson packet arrivals at rate p.

Let q, denote the number of packets at the link at the beginning of the n-th slot,

including the packet, if any, to be transmitted in the slot. Let Pn denote the number of packet

arrivals during the n-th slot; P. is a Poisson random variable with mean p. Then,

qn+ =P'+ q.- 1, if q.% !1; (F.l1)
+0, ifq.=O.

Let G(z) denote the transform E(zlf) in steady-state. Then, transforming F.1,

G(z) = ec--){z-'[GCz) - G(0)] + G(O)}, (F.2)

so that

G(z) = G(O) z 1 (F.3)

where G(0) is the probability 1 - p that no packet is to be transmitted in a slot. E(q,) in

steady-state is obtained from G(z) as

E(q.) =G'(1) p+ 2(1- p)' (F.4)

The expected number of packets waiting at a random time is

E(q.) = P (F.5)
2((- p)'

79

Thus, from Little's theorem, the expected packet waiting-time is

= . (..

_PJ)-2(.1 -p) - 2(1-P) (F.6)

b) Poisson packet arrivals at rate A, 0 5 A < 0.5, combined with rate 0.5 deterministic

packet arrivals, at the starts of alternate slots.

Assume that the deterministic packet arrivals are transmitted immediately upon ar-

rival. Then, only Poisson packet arrivals may be required to wait. The Poisson arrivals are

transmitted in alternate slots. Let type 'a' denote the type of these slots. Then, the number

q,, of packets at the link, at the beginning of the n-th type 'a' slot, satisfies F.1 for p = 2A.

"-'7;- Hence, the expected number of packets waiting at a random time is obtained from F.5 as

I- 2(1 -p)J. - -A (F.7)2(1 -. p 2 1 - 2A"

Thus, from Little's theorem, the expected packet waiting-time is

1 (A 2A (F.8)
(A + 0.5) 1 -2A = 1- 4A 2

c) Poisson packet arrivals at rate A, combined with rate p Bernoulli packet arrivals at

the starts of slots. 0<: A + p <1

Let q, denote the number of packets at the link at the beginning of the n-th slot,

including the packet, if any, to be transmitted in the slot. Let P,' and Bp denote the numbers

of Poisson and Bernoulli packet arrivals, respectively, during the n-th slot; P.' is a Poisson

random variable with mean A and B" a Bernoulli random variable with mean p. Then,

+D B fl , ifq, >1;

-n+l- P iu1 1 J, if q= 0.

-., -,

Let G(z) denote the transform E(z q-) in steady-state. Then, transforming F.9,

G(z) - ea R'-*)[(1 - p) +pzl{z-[G(z) - GCO)] + G(O)}, (F.10)

80

- ...

so that

G(z) = G(O) { (z-' - [+)] (F. 11)Sze---(a--') [I +-p 1TI] '(.1

where G(O) is the probability 1 - (A + p) that no packet is to be transmitted in a slot. E(q,)

in steady-state is obtained from G(z) as

A(A + 2p) (F. 12)

2[1 - (A + p)l"

The expected number of packets waiting at a random time is

A +A(1-+p) (F.13)2[1 - (A +p)]"

Thus, from Little's theorem, the expected packet waiting-time, evaluated for 0 < A < 0.5 and

p 0.5, is r A(+ P) 13A (.4
12[1 - (A + p)]l(A + p)] P=o.6 -4A--2

41

4.

',i i 1m'2L~

Appendix G

FORTRAN Programs for Simulators SB and FCFS

The programs listed in this appendix, and the respective starting page numbers, are

as follows:

* 1) Program SimulatorSB (main program for simulator SB) 84

2) Subroutine ScheduleBasedScheme (the core of simulator SB) 89

3) Subroutine GenerateArrivals

(generator of Poisson packets in slot for simulator SB) 92

4) Subroutine Measure (recorder of measurements for simulator SB) 93

5) Integer Function WrapAroundIncrement,

Integer Function FirstLink, Integer Function LastLink

(functions used by both simulators SB and FCFS) 96

6) Real*8 Function Ran

(generator of uniform random numbers in [0,1),

used by both simulators SB and FCFS) .. 97

7) Block Data Network (data used by simulator SB for network of Figure 4.1) 98

8) Program SimulatorFCFS (main program for simulator FCFS) 99

9) Subroutine FCFSScheme (the core of simulator FCFS) 105

10) Subroutine GenerateArrivals

(generator of Poisson packets in slot for simulator FCFS) 107

11) Subroutine Measure (recorder of measurements for simulator FCFS) 108

82

12) Subroutine Enqueue, Subroutine Dequeue

(enqueues packet in link-queue in simulator FCFS,

dequeues packet from link-queue in simulator FCFS) 112

13) Block Data Network (data used by simulator FCFS for network of Figure 4.1).... 113

The programs are written in Data General's FORTRAN77 for the MV10000 computer.

Comment statements in the programs begin with the symbol '!'. For ease of formatting the

programs for inclusion in this appendix, continuation symbols have been omitted from contin-

uation statements and statement labels have been shifted to the right.

83

IZI*

Program SimulatorSE I MOain program for simulator SB

integer FirstLink
include 'ParameterLS.f77' I MaxLinks, MaxSessions
include 'ParameterTB.f77' I TimeBufferLengti
common / globalbiock / NumberOfLinks, NumberOfSessions
integer Window, FinalTime
co a / simulatorscheme / Window (MaxSess ions)
co n / functionbiock / NumberOfLinksForSession (MaxSessions),

Links (MaxSessions, MdaxLinks)
real*8 Seed
Co n / arrivalbalock / Seed, TotalGenerationRate,

SessionDistribution (MaxSess ions)
integer GenerationTimeBufferEntry, TransmissionTimeBufferEntry,

TransmissionTimes, SuzrfIntraNetworkDelays,
Su=fSquaredIntraNetworkDelays, Sud~fDelays,
SunrfSquaredDelays

real MinEndToEndDe lay, MaxEndToEndDe lay,
MinPreTransmisuionDelay, MaxPreTransmissionDelay

t real*8 GenerationTimes
co n / measureblock / NumberlnProcess (MaxSessions),

GenerationTimeBufferEntry (MaxSessions),
GenerationTimes (MaxSessions, TimeBufferLength),
NumberGenerated (MaxSessions),
TransmissionTimeBufferEntry (MaxSessions, MaxLinks),
TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
NumberTransmitted (MaxSessions, MlaxLinks),
MinEndToEndDelay (MaxSessions),
MaxEnd:ToEndDe lay (MaxSeas ions),
SumfEndToEndDe lays (MaxSeassions),
SumfSquaredEndToEndDe lays (MaxSess ions),
MinIntraNetworkDelay (MIaxSessions),
MaxlntraNe tworkDe lay (MaxSess ions),
Sum~fIntraNetworkDelays (MaxSessions),
Sun~fSquaredIntraNetworkDelays (MaxSessions),
MinPreTransmissionDelay (MaxSessions),
MaxPreTransmissionDelay (MaxSessions),
SunOfPreTransmissionDelays (MaxSessions),
Sun~fSquaredPreTransmissionDelay (MaxSessions),
MmnDelay (MaxSessions, MaxLinks),
MaxDelay (MiaxSessions, MaxLinks),
SunOfDelays (MaxSessions, MAaxLinks),
SumfSquaredDelays (MaxSessions, MaxLinks)

integer Session
real MeasuredGenerationRate (MaxSessions),

MeanEndToEndDe lay (MaxSess ions),
MeanSquaredEndToEndDe lay OMaiSess ions),
MeanlntraNetworkDelay (MaxSessions).
MeanSquaredlntraNetworkDelay (MaxSessions),
MeanPreTransmissionDelay (MaxSessions),
MeanSquaredPreTransmissionDelay (MaxSessions),
MeasuredTransmissionRate CaxSessions, MaxLinks),
MeanDelay (MaxSessions, MaxLinks),
MeanSquaredDe lay (MaxScsi ions, MaxLinks)

84

, -,C

dimension GenerationRate (MaxSessions)

do while (.true.)
print 8, 'Enter generation rates
read 8, (GenerationRate (Session),

Session - 1, NumberOfSessions)
TotalGenerationRate - 0.0
do Session - 1, NumberOfSessions

TotalGenerationRate - TotalGenerationRate +
GenerationRate (Session)

end do I Total generation rate
DistributionSum - 0.0
SessionDistribution (NumberOfSessions) - 1.0
do Session - 1, NumberOfSessions - 1

DistributionSum- DistributionSum+
GenerationRate (Session) / TotalGenerationRate

SessionDistribution (Session) - DistributionSum
end do I Distribution function for session rates

do while (.true.)
print *, 'Enter windows
read 8, (Window (Session), Session - 1, NumberOfSessions)

do while (.true.)
print * 'Enter Seed ' Seed used : 314159.0
read ', Seed
InitialTime - 1

do Session 1 1, NumberOfSessions
NumberInProcess (Session) - 0
GenerationTimeBufferEntry (Session) - 0
NumberGenerated (Session) - 0
MinEndToEndDelay (Session) - 1.OE+9
MaxEndToEndDelay (Session) - 0.0
SunmfEndToEndDelays (Session) - 0.0
SuDfSquaredEndToEndDelays (Session) - 0.0
MinIntraNetworkDelay (Session) - 1000000000
MaxlntraNetworkDelay (Session) - 0
SumnfIntraNetworkDelays (Session) - 0
SumnfSquaredIntraNetworkDelays (Session) - 0
MinPreTransmissior-Delay (Session) - 1.OE+9
MaxPreTransmissionDelay (Session) - 0.0

SunOfPreTransmissionDelays (Session) - 0.0
SumOfSquaredPreTransmissionDelay (Session) - 0.0
do i - 1, NumberOfLinksForSession (Session)

Link - Links (Session, i)
TransmissionTimeBufferEntry (Session, Link) - 0
NumberTransmitted (Session, Link) - 0
if (i .ge. 2) then

MinDelay (Session, Link) - 1000000000
MaxDelay (Session, Link) - 0
Su=OfDelays (Session, Link) - 0
SunmfSquaredDelays (Session, Link) - 0

end if

85

d .

end do
end do I Measure block initialization

do while (.true.)
print ~,'Enter FinalTime
read ~,FinalTime

3Simulate
call ScheduleBasedScheme (InitialTime, FinalTime)

RealFinalTime - Real (FinalTime)
do Session - 1, NumberOfSessions

MeasuredGenerationRate (Session)-
Real (NumberGenerated (Session)) /RealFinalTime

RealNumberProcessed =
Real (NumberTransmitted (Session,

LastLink (Session)))
Mean~ndToEndDelay (Session)

SufEndToEndDe lays (Ses sion)/
RealNumberProcessed

MeanSquaredEndToEndDelay (Session) -
SumfSquaredEndToEndDelays (Session)I

RealNumberProcessed
MeanlntraNet'workDelay (Session) -

Real (Sum~flntraNetworkDelays (Session))/
Rea lNumbe rProcessed

MeanSquaredlntraNet'workDelay (Session)-
Real (Sud~fSquaredlntraNe two rkDelays (Session))I

RealNumberProcessed
MeanPreTransmissionDelay (Session) -

SuwfPreTransmissionDelays (Session)I
"3 RealNumberProcessed

MeanSquaredPreTransmissionDelay (Session)
Sun~fSquaredPreTransmissionDelay (Session)/

RealNumberProcessed
do i - 1, NumberOfLinksForSession (Session)

Link - Links (Session, i)
MeasuredTransmissionRate (Session, Link) -

Real (NumberTransmitted (Session, Link))/
RealFinalTime

if 0i ge. 2) ihen
MeanDelay (Session, Link)

Real (SunOfDelays (Session, Link))/
RealNumberProcessed

MeanSquaredDelay (Session, Link) -
Real (Sum~fSquaredDelays (Session, Link))/

RealNumberProcessed
end if

end do
end do I Output-data computation

do Session -1, NumberOfSrssions
print ~,'Session - ', Session
print ','MeasuredGenerationRate

86

MeasuredGenerationRate (Session)
print *, 'MeanEndToEndDelay - ',

MeanEndToEndDelay (Session)
print *, 'MeanSquaredEndToEndDelay ,

MeanSquaredEndToEndDelay (Session)
print *, 'MinEndToEndDelay - ',

MinEndToEndDelay (Session)
print *, 'MaxEndToEndDelay - ',

MaxEndToEndDelay (Session)
print *, 'MeanlntraNetworkDelay -

MeanlntraNetworkDelay (Session)
print *, 'MeanSquaredlntraNetworkDelay -

MeanSquaredlntraNetworkDelay (Session)
print *, 'MinlntraNetworkDelay - '

MinIntraNerworkDelay (Session)
* print *, 'MaxlntraNetworkDelay - ',

MaxlntraNetworkDelay (Session)
print *, 'MeanPreTransmissionDelay -

MeanPreTransmissionDelay (Session)
print *, 'MeanSquaredPreTransmissionDelay -

MeanSquaredPreTransmissionDelay (Session)
print *, 'MinPreTransmissionDelay - ',

MinPreTransmissionDelay (Session)
print *, 'MaxPreTransmissionDelay - ',

MaxPreTransmissionDelay (Session)
do i - 1, NumberOfLinksForSession (Session)

Link - Links (Session, i)
print , 'Link - ', Link
print , 'MeasuredTransmissionRate -

MeasuredTransmissionRate (Session, Link)
if (i .ge. 2) then

print *, 'MeanDelay -
MeanDelay (Session, Link)

print *, 'MeanSquaredDelay - ',
MeanSquaredDelay (Session, Link)

print *, 'MinDelay -
MinDelay (Session, Link)

print *, 'MaxDelay -
*MxDelay (Session, Link)

end if
end do

end do I Output results

print , 'Current time - ', FinalTime
print ', 'Enter "0" to exit run duration loop
read , nd
if (Ind .eq. 0) go to 40
InitialTime - FinalTime + 1

end do I Run duration loop
40 continue

print *, 'Enter "0" to exit seed loop
read * Ind
if (Ind .eq. 0) go to 30

end do I Seed loop

87

30 continue
print ~,'Enter "0" to exit window loop:
read Inmd
if (Ind -eq. 0) go to 20

2end do !Window loop
20 continue
print ~,'Enter ".0" to exit generation rate ioop
read In d
if (Ind .eq. 0) go to 10

end do I Generation rate loop
10 continue
stop

ii 88

I The core of simulator SB
Subroutine ScheduleBasedScheme (InitialTime, FinalTime)

* integer FinalTime
integer WrapAroundncrenent, FirstLir;k
include 'ParameterLS.f77' I MdaxLinks, Ma&xSessions
include 'ParameterPJf77' I Ma&xPeriod
common / globalbiock / NumberOfLinks, NumberOfSessions
integer Window
common / simulatorscheme / Window (MaxSess ions)
integer Period, SessionFrame, TokenBufferLength, SessionCycle,

co~mn / ishemeblock / Period,
SessionFrame (MaxLinks, MaxPeriod),
TokeniBufferLength (MaxSess ions),
NumberOfSessionsOnLink (MT'axLinks),
SessionCycle (MaxLinks, MaxPeriod),
OutLinks (MaxLinks, MlaxSessions)

co on / schemearrivals/
NumberOfPackets (MaxLinks, MaxSessions)

comm n / functionbiock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MdaxLinks)

integer Time, Slot, RoundRobinPosition (MaxLinks), Session,
TokenBuffer Aarker (Ma&xSess ions),
TokenBuffers (MaxSessions, MdaxLinks + 1), Packets, Tokens,

A TokenOut (MaxLinks), SessionServed (MaxLinks), Position,
OutLink

dimension NumberOfTokens CdaxLinks, MaxSessions)
save

* if (InitialTime .eq. 1) then I Initialize
Slot - 1
do Link - 1, NumberOfLinks

RoundRobinPosition (Link) - 1
end do
do Session - 1, NumberOfSessions

TokenBuffer~arker (Session) - 1
V do i - 1, TokenBufferLength (Session)

TokenBuffers (Session, i) - 0
end do
Link - FirstLink (Session)
NumberOfPackets (Link, Session) - 0

* NumberOfTokens (Link, Session) - Window (Session)
do i - 2, NunberOfLinksForSession (Session)

Link - Links (Session, i0
NumberOfPackets (Link, Session) - 0
NumberOfTokens (Link, Session) - 0

end do
end do I Initializations complete

end if

do Time - InitialTime, FinalTime
do Session -1, NumberOfSessions

Length -TokenBufferLength (Session)

89

Marker - WrapAroundlncrement (TokenBufferMarker(Session),
Length)

TokenBufferMarker (Session) -Marker
if (TokenBuffers (Session, Marker) .eq. 1) then ! Token

Link - FirstLink (Session)
NumberOfTokens (Link, Session) -

NumberOfTokens (Link, Session) + 1
VTokenBuffers (Session, Marker) - 0

end if
end do I Real tokens return to source nodes

do Link - 1, Numb.erOfLinks
Session - SessionFrame (Link, Slot)
if (Session .gt. 0) then I Session has priority to slot

Packets - NumberOfPackets (Link, Session)
if (Packets .gt. 0) then I Session has packets waiting

if (FirstLink (Session) .ne. Link) then I In transit
Tokens - NumberOfTokens (Link, Session)
if (Tokens .eq. Packets) then I Use real token

NumberOfTokens (Link, Session) - Tokens - 1
TokenOut (Link) - 1

else I Use fictitious token
TokenOut (Link) - 0

end if
else I First link

TokenOut (Link) - 0
end if
NumberOfPackets (Link, Session) - Packets - 1
SessionServed (Link) - Session
call Measure (Link, Session, 0.0, Time - 1)
go to 10

end if
end if
NumberInCycle - NumberOfSessionsOnLink (Link)
Position - RoundRobinPosition (Link)
do i - 1, NumberInCycle

Position -
WrapAroundlncrement (Position, NumberlnCycle)

Session - SessionCycle (Link, Position)
Packets - NumberOfPackets (Link, Session)
if (Packets .gt. 0) then I Session has packets waiting

Tokens - NumberOfTokens (Link, Session)
if (FirstLink (Session) .ne. Link) then I In transit

go to 20
else if (Tokens .gt. 0) then I 1st link, real token

go to 20
end if

end if
if i .eq. NumberInCycle) then

SessionServed (Link) - 0
go to 30

end if
end do I Round-robin loop for searching in cyclic order

20 continue I Serve session from round-robin

90

4,"

if (Tokens .gt. 0) then I Use real token
NumberOfTokens (Link, Session) - Tokens - 1
TokenOut (Link) - 1

else I Standard, in transit
TokenOut (Link) - 0

end if
NumberOfPackets (Link, Session) - Packets - 1
SessionServed (Link) - Session
call Measure (Link, Session, 0.0, Time - 1)

30 continue
RoundRobinPosition (Link) - Position

10 continue
end do I Link loop ends

I Generate packets in current slot
call GenerateArrivals (Time)

do InLink- 1, NumberOfLinks
Session - SessionServed (InLink)
if (Session .ne. 0) then I Packet arrived

OutLink - OutLinks (InLink, Session)
if (OutLink .ne. 0) then I Session in transit

NumberOfPackets (OutLink, Session) -
NumberOfPackets (OutLink, Session) + 1

if (TokenOut (InLink) .eq. 1)
NumberOfTokens (OutLink, Session)

NumberOfTokens (OutLink, Session) + 1
else I Session exits

if (TokenOut (InLink) .eq. 1) 1 Return real token
TokenBuffers (Session,

TokenBufferMarker (Session)) - 1
end if

end if
end do I In-link loop ends

Slot -WrapAroundIncrement (Slot, Period) I Next frame-slot
end do I Time loop ends
return
end

-..p..

I9

I Generator of Poisson packets in slot for simulator SB
Subroutine GenerateArrivals (Time)

integer Time
integer FirstLink
include 'ParameterLS.f77' ! MaxLinks, MaxSessions
common / globalblock / NumberOfLinks, NumberOfSessions
real*8 Ran, Seed, GenerationTime
comon / arrivalblock / Seed, TotalGenerationRate,

SessionDistribution (MaxSessions)
comon / schemearrivals I

NumberOfPackets (MaxLinks, MaxSessions)
integer Session

RealTime - Real (Time - 1)-
TimeGenerated - 0.0
do while (TimeGenerated .It. 1.0) I Generate next packet in slot

TimeGenerated - TimeGenerated-
Real (log (1.0 - Ran (Seed))) / TotalGenerationRate

* if (TimeGenerated .gt. 1.0) go to 10 1 No more packet in slot
RandomValue - Real (Ran (Seed))
do Session - 1, NumberOfSessions I Generated packet's session

if (RandomValue .le. SessionDistribution (Session)) then
Link - FirstLink (Session)
NumberOfPackets (Link, Session) -

NumberOfPackets (Link, Session) + 1
GenerationTime - RealTime + TimeGenerated
call Measure (0, Session, GenerationTime, 0)
go to 20

end if
end do I Session loop ends

20 continue
end do I Generation time loop ends
10 continue
return
end

92

I Recorder of measurements for simulator SB
Subroutine Measure (Link, Session, RealTime.Measured,

T ime.ve asu r ed)

integer Session, TimeMeasured
real *8 RealTimeMeasured
integer WrapAroundlncrement, FirstLink
include 'ParameterLS.f77' I MaxLinks, MaxSessions
include 'ParameterTB.f77' I TimeBufferLength
conmon / functionbiock / NumberOfLinksForSession (MaxSessions),

Links (MaxSessions, MaxLinks)
integer GenerationTimeBufferEntry, TransmissionTimeBufferEntry,

TransmissionTimes, Suni~fIntraNetworkDelays,
SudX~SquaredntraNetworkDelays, SuncfDelays,
Sun~fSquaredDe lays

real MinEndToEndDe lay, MaxEndToEndDe lay,
MinPreTransmissionDelay, MaxPreTransmissionDelay

real*8 Gene rat jonTimes
comm n / measureblock / NumberlnProcess (MaxSessions),

GenerationTimeBufferEntry (MaxSessions),
GenerationTimes (MaxSessions, TimeBufferLength),
NumberGenerated (MaxSessions),
TransmissionTimeBufferEntry (MaxSessions, MNaxLinks),
TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
NumberTransmitted (MaxSession,, MaxLinks),
Min~ndToEndDelay (MaxSessions),
MaxEndToEndDelay (MaxSess ions),
SuniXEndToEndle lays (MaxSess ions),
SunOfSquaredEndToEndDe lays (MaxSess ions),
MinlntraNetworkDelay (MaxSessions),
MaxlntraNet'workDelay (MaxSessions),
SunDfIntraNerworkDelays (MaxSessions),
Sun1DfSquaredIntraNer'workDe lays (Ma~xSess ions),
MinPreTransmissionDelay (MaxSessions),
MaxPreTransmissionDelay (MaxSess ions),
Sun~fPreTransmissionDelays (MaxSessions),
Sw=fSquaredPreTransmissionDelay (MaxSessions),
MinDelay (MaxSessions, MaxLinks),
Max.Delay (MaxSessions, MaxLinks),
Su=DfDelays (MaxSessions, MaxLinks),
Sun1~fSquaredDelays (MaxSessions, MaxLinks)

integer Entry, OldTime, Delay
real*8 GenerationTime

if (Link .eq. 0) then I Packet generated
InProcess - NumberInProcess (Session)
if (InProcess .eq. TimeBufferLength) ther. I Overflow

stop 'Time buffer overfclow occurred'
else ! Enter packet generated

4.. Entry - WrapAroundlncrement (GenerationTimeBufferEntry
(Session), TimeBufferLength)

GenerationTimeBufferEntry (Session) - Entry
GenerationTimes (Session, Entry) - RealTimeMeasured
NumberGenerated (Session) -NumberGenerated (Session) + 1

93

NumberlnProcess (Session) -InProcess + 1
end if

else if (Link .ne. LastLink (Session)) then I Enter transmission'
Entry - WrapAroundlncrement (TransmissionTimeBufferEntry

(Session, Link), TimeBufferLength)
TransmissionTimeBufferEntry (Session, Link) - Entry
TransmissionTimes (Session, Link, Entry) - TimeMeasured
NumberTransmitted (Session, Link) -

NumberTransmitted (Session, Link) + 1
else I Packet transmitted on last link in path

Entry - WrapAroundlncrement (TransmissionTimeBufferEntry
(Session, Link), TimeBufferLength)

TransmissionTime~ufferEntry (Session, Link) - Entry
TransmissionTimes (Session, Link, Entry) - TimeMeasured
NumberTransmitted (Session, Link) -

NumberTransmitted (Session, Link) + 1
GenerationTime -GenerationTimes (Session, Entry)
EndToEndDelay -TimeMeasured - GenerationTime + 1.0
MinEndToEndDelay (Session) -

* Min (MinEndToEndflelay (Session), EndToEndDelay)
MaxEndToEndDelay (Session) -

Max (MaxEndToEndDelay (Session), EndToEndDe lay)
Su=fEndToEndDe lays (Session)-

SumfEndToEndDe lays (Session) + EndToEndDe lay
Sum~fSquaredEndToEndDelays (Session)-

SumfSquaredEndToEndDelays (Sess ion) +
EndToEndDe lay * EndToEndDe lay

OldTime - TransmissionTimes (Session, Fi~sLink (Session),
Entry)

IntraNetworkDelay - TimeMeasured -OldTime + 1
MinlntraNetworkDelay (session) -

Min (MinlntraNetworkDelay (Session), IntraNetworkDelay)
MaxlntraNetvorklelay (Session) -

Max (MaxlntraNetworkDelay (Session), IntraNet'workDelay)
* Su=flntraNetworkDelays (Session) -

SuifIntraNetworkDelays (Session) + IntraNetworkDelay
SumfSquaredlntraNetworkDelays (Session) -

* SumfSquaredlntraNetworkDelays (Session) +
IntraNetworkDelay *IntraNetworkDelay

PreTransmissionDelay-
EndToEndDelay - Real (IntraNe two rkDelay)

MinPreTranamissionDelay (Session)-
Min OvinPreTransmissionDelay (Session),
PreTransmissionDelay)

MaxPreTransmissionDelay (Session)
Max (?&xPreTransmissionDelay (Session),
PreTransmissionDelay)

SuzDfPreTransmissionDelays (Session) -
SumfPreTransmissionDelays (Session) +
PreTransmiss ionDe lay

Su=fSquaredPreTransmissioDDelay (Session)-
SumfSquaredPreTransmissionDelay (Session) +
PreTransmissionDelay * PreTransmissionDelay

do i -2, NumberOfLinksForSession (Session)

94

Ne,Link - Links (Session, i)

NeWTime - TransmissionTimes (Session, NewLink, Entry)
Delay - NewIrime - OldTime
MinDelay (Session, NewLink) -

Min (MinDelay (Session, NewLink), Delay)
MaxDelay (Session, NewLink) -

Max (MaxDelay (Session, NewLink), Delay)
SunOfDelays (Session, NevOink) -

SumOfDelays (Session, NewLink) + Delay
SumOfSquaredDelays (Session, Ne'wLink) -

SumOfSquaredDelays (Session, NewLink) + Delay * Delay
OldTime - Newrmme

end do I Link delay loop ends
NumberlnProcess (Session) -NumberlnProcess (Session) - 1

end if
return
end

-9

U

95

I Functions used by both simulators SB and FCFS

Integer Function WrapAroundlncrement (Value, MaxValue)

integer Value
if (Value .1t. MaxValue) then I Increment

WrapAroundlncrement - Value + 1
else if (Value .eq. MkxValue) then I Wrap around

WrapAroundlncrement - 1
else I Error

WrapAroundlncrement - Value
stop 'Invalid argument to WrapAroundlncrement'

end if
return
end

Integer Function FirstLink (Session)

integer Session
include 'ParameterLS.f77' I MaxLinks, MaxSessions
comon / functionblock / NumberOfLinksForSession (MaxSessions),

Links (MaxSessions, MaxLinks)

FirstLink - Links (Session, 1)
return
end

Integer Function LastLink (Session)

A integer Session

include 'ParameterLS.f77' I MaxLinks, MaxSessions
Scomon / functionblock / NumberOfLinksForSession (MaxSessions),

Links (MaxSessions, MaxLinks)

LastLink - Links (Session, NumberOfLinksForSession (Session))
return
end

J. 96

* - s . , , . " ,. " ' " . . " . . ., " ,.: '- , ,".' '
.

I Generator of uniform random numbers in [0,1),
I used by both simulators SB and FCFS
Real*8 Function Ran (Seed)

real*8 Seed, Combination, Modulus
real Nkltiplier
parameter (Modulus - 4294967296.0, Mltiplier - 69069.0,

Constant - 1.0)

Combination - Moltiplier * Seed + Constant
if (Combination .gt. Modulus) then

Seed - m od (Combination, Modulus)
else if (Combination lt. Modulus) then

Seed - Combination
else

Seed - 0.0
end if
Ran - Seed /Modulus
return
end

I9

,4"

• 97

I Data used by simulator SB for network of Figure 4.1
Blo~ck Data Network

include 'ParameterLS.f77' I MaxLinks, MlaxSessions
include 'ParameterP.f77' I MlaxPeriod
co n / globaiblock / NumberOfLinks, NumberOfSessions
integer Period, SessionFrame, TokenBufferLength, SessionCycle,

common / schemeblock / Period,
SessionFrame CaxLinks, MaxPeriod),
TokenBufferLength (MaxSess ions),
NumberOfSessionsOnLink (MaxLiznks),
SessionCycle (MaxLinks, MaxPeriod),
OutLinks (MaxLinks, MakxSessions)

co ~n / functionbiock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

data NumberOfLinks, NumberOfSessions / 2, 3I
data Period / 2 /, SessionFrame (1,1) / 1I,

Ses:ionFrame (1,2) /2 ISessionFrame (2,1) / 1 I
data NumberOfSessionsOnLink (1) / 2 I

NuberOfSessionsOnLink (2) / 2 /
data SessionCycle (1,1) / 1 /, SessionCycle (1,2) / 2 I

Session~ycle (2,1) / 1 /, SessionCycle (2,2) / 3 /
V data OutLinks (1,1) / 2 /, OutLinks (1,2) / 0 1

OutLinks (2,1) / 0 /, OutLinks (2,3) /0/
data NumberOfLinksForSession (1) /2 I

NumberOfLinksForSession (2) / 1I
* NumberOfLinksForSession (3) / I

data Links (1,1) / 1 /, Links (1,2) /2 ILinks (2,1) /1 I
Links (3,1) / 2 /

data TokenBufferLength (1) / 3 ITokenBufferLength (2) /2 I
TokenBufferLength (3) /2 /

end

98

Program SimulatorFCFS I Main program for simulator FCFS

integer FirstLink, LastLink
include 'ParameterLS.f77' I MdaxLinks, M4axSessions

4 include 'ParameterTB.f77' I TimeBufferLength
co n / globalbiock / NumberGELinks, NuznberOfSessions
integer Wndow, FinalTime
conion / simulatorscheme / Window OMaxSess ions)
comn / functionbiock / NumberOfLinksForSession O(MaxSessions),

Links (M~axSessions, MaxLinks)
real*S Seed
commoa / arrivalbiock / Seed, TotalGenerationRate,

SessionDistribution (MaiSess ions)
integer Generat ionTimeBufferEntry, VindowingTimeBufferEntry,

Transm1issionTimeBufferEntry, TranSM13SionTimes,
SumfIntraNeworkDelays, Sun~fSquaredlntraNetworkDelays,
Sum~fDelays, Sum~fSquaredDelays

real MinEndToEndDelay, MaxEndToEndDelay, MinlntraWindow"Delay,
MAxIntraWIndovADe lay, MinPreindov#Ve lay, MaxPreWindowDelay,
MinPreTranSMissionDelay, MaxPreTransmissionDelay,
Min~IFndowloNe tDe lay, MaxVIndov~roNe tDe lay

realPS GenerationTimes, WindowingTimes
conmon / measureblock / NumberlnProcess (MaxSessions),

GenerationTimeBufferEntry (MaxSessions),
GenerationTimes CNUXSessions, TimeBufferLength),
NumberGenerated (MaiSessions),
WindowingTimeBufferEntry CWaxSess ions),
WndowingTimes (MaxSeassions, TimeBufferLength),
NumberVVindowed (MaxSessions),
TransmissionTimeBufferEntry (MaxSessions, MaxLinks),
TransmissionTimes (MaxSessions, MlaxLinks, TimeBufferLength),
NumberTransmitted (MaxSessions, MaxLinks),

* MinEndToEndDelay (MaiSessions),
MaxEndToEndDe lay (M~axSess ions).
Su=fEndToEndDe lays (Maise ssi ons),
SumfSquaredEndToEndDe lays (MaxSeassions),
Minlntra~indoDelay (axSessions),
Maxlntra~ndovwelay (MaxSessions),
Suf Int r~ndovA~e lays (MaxSess ions),
SumfSquaredIntra~indowi~elays (MaxSessions),
MinPre~indovDelay (MaxSess ions),
MaxPreWindovDelay (MatxSessions),
Sum~f Pre~indov;De lays (MaxSeassions),
SumfSquaredPreWIndowDelays COAxSess ions),
MinlntraNetworkDelay (MiaxSessions),
MaxlntraNetworkle lay (aIUSess ions),
SumfIntraNetworkDelays (MaxSessions),
SumfSquaredIntraNetworkDelays (MaxSessions),
MinPreTransmissionDelay (MaxSessions),
MaxPreTransmissionDelay (MvaxSesi ions),
Su=fPreTransmissionDelays (M~axSessions),
Su=fSquaredPreTransmissionDelay (MaxSessions),
MinWindoW'oNetDolay CaxSessions),
MaxWindofl'oNetDelay (MaxSeassions),

1t 99

SuzfW IndoWroNetDe lays (MiaiSess ions),
Su=fSquaredWindow1'oNetDelays (MaxSessions),
MinDulay (MaxSessions, MaxLinks),
MIxDelay (MaxSessions, MaxLinks),
SunOfDelays (MaxSessions, MaxLinks),
SumfSquaredDe lays (MaxSess ions, MaxLinks)

integer Session
real MeasuredGenerationRate C0axSessions),

MeasuredWindowingRate (MaxSess ions),
MeanEndToEndDe lay (MaxSeassions),
iMeanSquaredEndToEndDe lay (MxSess ions),
MeanIntraWIndovADe lay (MaxSeassions),
MeanSquaredIntraWindoDelay (MaiSess ions),
MeanPreWindo~vAelay (MaxSessions),
MeanSquaredPreWindovDelay (MaxSessions),
MeanIntraNetworkDelay (MaxSessions),
MeanSquaredlntraNet'workDelay (MaxSessions),
MeanPreTransmissionlelay (MaxSessions),
MeanSquaredPreTransmissionlelay (MaxSessions),
Mean~vIndov/roNetDe lay C"xSessions),
MeanSquaredWindowl'oNetDelay (MaxSessions),
MeasuredTransmissionRate C0axSessions, MaxLinks),
MeanDelay (MaxSessions, MaxLinks),
MeanSquaredDelay (MakxSessions, MaxLinks)

dfimension GenerationRate (MxSessions)

doin 'n~ter generation rates

read ~,(GenerationRate (Session),
Session - 1,NumberOfSessions)

TotalGenerationRate - 0.0
do Session - 1, NumberOfSessions

TotalGenerationRate - TotalGenerationRate +
GenerationRate (Session)

end do I Total generation rate
DistributionSum - 0.0
SessionDistribution (NumberOfSessions) - 1.0
do Session - 1, NumberOfSessions - 1

DistributionSum - DistributionSum +
GenerationRate (Session) / TotalGenerationRate

SessionDistribution (Session) - DistributionSum
end do I Distribution function for session rates

do while (.true.)wids

read *, (Window (Session), Session - 1, NumberOfSessions)

do wjhile (.true.)
print 8,'Enter Seed 'I Seed used :314159.0
read ,Seed

InitialTime -1

do Session -1, NumberOfSessions
NumberlnProcess (Session) - 0

100

GenerationTimeBufferEntry (Session) - 0
NumberGenerated (Session) - 0
WindowingTimeBufferEntry (Session) -0
Number~indowed (Session) = 0
MinEndToEndDelay (Session) - 1.OE+9
MaxEndToEndDelay (Session) - 0.0
SumfEndToEndDelays (Session) - 0.0
SumfSquaredEndToEndDelays (Session) - 0.0
MinlntraWindovDelay (Session) - 1.OE+9
MaixlntraWIndo'wDelay (Session) - 0.0
SumfIntraWindovelays (Session) - 0.0
SumfSquaredIntraWindo,%Delays (Session) - 0.0
MinPreWindo'wDelay (Session) - 1.OE+9
MaxPreVIindovADelay (Session) - 0.0
SumOf PreWIndovDe lays (Session) - 0.0
SumfSquaredPreWIndovAelays (Session) - 0.0
MinlntraNetworklelay (Session) - 1000000000
MlaxlntraNetworkflelay (Session) - 0
Sum~flntraNetworkDelays (Session) - 0
SumfSquaredlntraNetworkDelays (Session) - 0
MinPreTransmissionDelay (Session) - 1.OE+9
MdaxfreTransmissionDelay (Session) - 0.0
SumfPreTransmissionDelays (Session) - 0.0
Sun~fSquaredPreTransmissionDelay (Session) -0.0

MinWindoWroNetDelay (Session) - 1.OEe9
MdaxWindowroNetDelay (Session) - 0.0
Su=fWndoW'oNetDelays (Session) - 0.0
Sum~fSquaredW IndowroNetDelays (Session) - 0.0
do i - 1, NumberOfLinksForSession (Session)

Link - Links (Session, 0)
TransmissionTimeBufferEntry (Session, Link) -0
NumberTransmitted (Session, Link) - 0
if 0i .ge. 2) then

MmnDelay (Session, Link) - 1000000000
MaiDelay (Session, Link) - 0
SuzrOfDelays (Session, Link) - 0
SurrOfSquaredDelays (Session, Link) -0

end if
end do

end do I Mecasure block initialization

do while (.true.)
print ','Enter FinalTime
read *FinalTime

call FCFSScheme (InitialTime, FinalTime) I Simulate

RealFinalTime - Real (FinalTime)
do Session - 1, INwmberOfSess ions

MeasuredGenerationRate (Session)
Real (NumberGenerated (Session)) /RealFinalTime

MeasuredWindowingRate (Session)-
Real (NumberWindowed (Session)) /RealFinalTime

RealNumberProcessed -

101

Real (NumberTransmitted (Session,
LastLink (Session)))

-' MeanEndToEndDe lay (Session)
SumOfEndToEndDelays (Session)I

RealNumberProcessed
MeanSquaredEndToEndDe lay (Session)-

Sun~fSquaredEndToEndDe lays (Session)/
RealNumberProcessed

MeanIntraWIndovAOe lay (Session)
Suf IntraWindovDe lays (session)I

RealNumberProcessed
MeanSquaredlntraWIndov~elay (Session)

SumfSquaredIntraWindowDelays (Session)I
RealNumberProcessed

MeanfreWindovDelay (Session)-
SuxcfPreWindovDelays (Session)I

RealNumberProcessed
MeanSquaredPreWIndovADelay (Session) -

Su=fSquaredPreVindov#Delays (Session)/
RealNumberProcessed

MeanlntraNetworklelay (Session) -
Real (SunDflntraNe two rkDelays (Session))/

RealNumberProcessed
MeanSquaredlntraNetworkDelay (Session)

Real (Su2DfSquaredlntraNetworkDelays (Session))/
RealNumberProcessed

MeanPreTransmissionDelay (Session) -
SumfPreTransmissionDelays (Session)/

RealNumberProcessed
MeanSquaredPreTransmissionDelay (Session)

Sun~fSquaredPreTransmissionDelay (Session)/
RealNumberProcessed

MeanWIndowl'oNetDelay (Session)-
Su=fWndowroNetDelays (Session)/

RealNumberProcessed
MeanSquaredWindowlroNe tDc lay (Session)-

SumfSquaredWindow~oNetDelays (Session)/
RealNumberProcessed

do i - 1, NumberOfLinksForSession (Session)
Link - Links (Session, i)
MeasuredTransmissionRate (Session, Link)-

Real (NumberTransmitted (Session, Link))I
RealFinalTime

if 0i ge. 2) then
MeanDelay (Session, Link) -

Real (SunOfDelays (Session, Link))I
Re~lNumberProcessed

MeanSquaredDelay (Session, Link) -
Real (Sun~fSquaredDelays (Session, Link))/

end if RealNumbe rProcessed

end do
end do I Output-data computation

102

do Session - 1, NumberOfSessions
print ,'Session - ', Session
print 8, 'MeasuredGenerationRate-

MeasuredGencrat ion.Rate (Sess ion)
print *, 'MeasuredW"IndowingRate - '

MeasuredWindowingRate (Session)
print 8, 'Mean~ndToEndDelay - '

MeanEndToEndDe lay (Session)
print 8, 'MeanSquaredEndToEndDelay-

MeanSquaredEndToEudDelay (Session)
print *, 'Min~ndToEndDelay - '

MinEndToEndDelay (Session)
print *, 'MaxEndToEndDelay-

MAx~ndToEndDe lay (Session)
print *, 'MeanIntraindorDelay

MeanIntraWindomDelay (Session)
print 8, 'MeanSquaredlntra~rIndovA~elay-

MeanSquaredlntraWindovA~elay (Session)
print 8, 'MinIntraWindovDelay - '

Minlntra~indovj~elay (Sessi~a)
print s. 'MaxIntraVVIndov~e lay - '

MaxIntraVindoDe lay (Sess;on)
print *, 'MeanPre~indoDelay - '

MeanPreWIndovDelay (Session)
print *, 'MeanSquaredPieWindow~velay

MeanSquaredPreV~Indove lay (Session)
print *, 'MinPreindowDelay - '

MinP~e~hudvvelay (Session)
print *, 'MaxPre~rIndovDe lay - '

MaxPreindovPelay (Session)
A ~print 8, 'MeanlntraNetworkflelay

MeanlntraNetworkDelay (session)
print *, 'MeanSquaredlntraNetworkDelay-

MeauSquaredlntraNet'workDelay (Session)
print 8, 'MinIntraNetworkDelay - '

MinlntraNetworkDelay (Session)
print *, 'MfaxlntraNet'workDelay - '

MaxlntraNet'workDelay (Session)
print *, 'MeanPreTransmissionDelay

MeanPreTransmissionDelay (Session)
print *, 'MeanSquaredPreTransmissionDelay

MeanSquaredPreTransmissionDelay (Session)
print *, 'MinPreTransmissionDelay - '

MinPreTransmissionDelay (Session)
print 8, Ma~xPreTransmissionDelay-

MazPreTransmissionDelay (Session)
print 8,'eanrIndow~oNetDe lay-

MeatWindovl'oNetDe lay (Session)
print *, 'MeanSquared~indov/roNetDelay-

MeanSquaredW"Indovl'oNetDelay (Session)
print *, 'MinWindoWroNetDclay - ',

Min~indowFloNetDe lay (Session)
print *, 'MAiWIndoW!'oNetDe lay - ',

MazWindoWroNctDe lay (Session)

4.. 103

do i - 1, NumberOfLinksForSession (Session)
Link - Links (Session, i)
print *, 'Link - ', Link
print , 'MeasuredTransmissionRate -

MeasuredTransmissionRate (Session, Link)
if (i .ge. 2) then

print *, 'MeanDelay -
MeanDelay (Session, Link)

print *, 'MeanSquaredDelay - '
MeanSquaredDelay (Session, Link)

print *, 'MinDelay - '
MinDelay (Session, Link)

print *, 'MaxDelay - '
MaxDelay (Session, Link)

end if
end do

end do I Output results

print , 'Current time - ', FinalTime
print *, 'Enter "0" to exit run duration loop
read Ind
if (Ind .eq. 0) go to 40
InitialTime - FinalTime + I

end do ! Run duration loop
40 continue

print , 'Enter "0" to exit seed loop
read , Ind
if (Ind eq. 0) go to 30

end do I Seed loop
30 continue

print 'Enter "0" to exit window loop
read Ind
if (Ind .eq. 0) go to 20

end do I Window loop

20 continue
print *,'Enter "0" to exit generation rate loop:

"- read * Ind
if (Ind .eq. 0) go to 10

end do I Generation rate loop
10 continue
stop
end

104

The core of simulator FCFS
Subroutine FCFSScheme (InitialTime, FinalTime)

integer FinalTime
integer WrapAroundlncrement, FirstLink
include 'ParameterLS.f77' I MaxLinks, MaxSessions
conmon / globalbiock / NumberOfLinks, NumberOfSessions
integer Window
comon / simulatorscheme / Window (MlaxSess ions)
integer TokenBufferLength, OutLinks
conmon / schemeblock / TokenBufferLength (axSessions),

OutLinks (MaxLinks, MJaxSessions)
comnon / schemearrivals/

NumberOfPacketsAtSource 0MaxSe s sions),
Numbe rOfTokens (MaxSessions)

conmon / functionblock / NumberOfLinksForSession (MlaxSessions),
Links (MiaxSessions, MaxLinks)

include 'ParamcterLB.f77' I LinkBufferLength
integer QueueHead, QueueTail
conmon / queueblock / LinkQueue (MaxLinks, LinkBufferLength),

QueueHead (MaxLinks), QueueTail (MaxLinks),
NumberOfPackets (MaxLinks)

integer Time, Session, TokenBufferNarker (MaxSessions),
Token.Buffers (MaxSessions, MaxLinks + 1), Packets,
SessionServed (MaxLinks), OutLink

real*8 RealTime
save

if (InitialTime .eq. 1) then I Initialize
do Session - 1, NumberOfSess ions

A' TokenBuffer.Narker (Session) - 1
do i - 1, TokenBufferLength (Session)

TokenBuffers (Session, i) - 0
end do
NumberOfPacketsAtSource (Session) - 0
NumberOfTokens (Session) - Window (Session)

end do

do Link - 1, NumberOfLinks
NumberOfPackets (Link) - 0
QueueHead (Link) -0
QueueTail (Link) -0

end do I Initializations complete
end if

do Time - InitialTime, FinalTime
RealTime - Time - 1
do Session -1, NumberOfSess ions

Length -TokenBufferLength (Session)
Mdarker -WrapAroundlncrement (TokenBufferNarker(Session),

Leng th)
Token.Buffer8arker (Session) - N..,rker
if (TokenBuffers (Session, Mlarker) .eq. 1) then I Token

~, -Packets -NumberOfPacketsAtSourc e (Session)

105

40-1

if (Packets .gt. 0) then I Use token to enter packet
call Enqueue (FirstLink (Session), Session)
call Measure (-l, Session, RealTime, 0)
NumberOfPacketsAtSource (Session) - Packets 1

else I Store token
NumberOfTokens (Session)

NumberOfTokens (Session) + 1
end if
TokenBuffers (Session, Marker) - 0

end if
end do I Window-tokens return to source nodes

do Link - 1, NumberOfLinks
call Dequeue (Link, Session)
SessionServed (Link) - Session
if (Session .ne. 0)

call Measure (Link, Session, 0.0, Time - 1)
end do I Link loop ends

I Generate packets in current slot
call GenerateArrivals (Time)

do InLink - 1, NumberOfLinks
Session - SessionServed (InLink)
if (Session .ne. 0) then I Packet arrived

OutLink - OutLinks (InLink, Session)
4 if (OutLink .ne. 0) then I Session in transit

call Enqueue (OutLink, Session)
else I Session exits, return window-token

TokenBuffers (Session,
TokenBufferMarker (Session)) - 1

eend if
end if

end do I In-link loop ends

end do I Time loop ends
return
end

106

1 Generator of Poisson packets in slot for simulator FCFS
Subroutine GenerateArrivals (Time)

integer Time
integer FirstLink
include 'ParameterLS.f77' I MaxLinks, MxSessions
conmon / globalblock / NumberOfLinks, NumberOfSessions
real*8 Ran, Seed, GenerationTime
comnon / arrivalblock / Seed, TotalGenerationRate,

SessionDistribution (axSessions)
coon / schemearrivals /

NumberOfPacketsAtSource (MaxSessions),
NumberOfTokens (MaxSessions)

integer Session, Tokens

RealTime - Real (Time - 1)
TimeGenerated - 0.0
do while (TimeGenerated .1t. 1.0) 1 Generate next packet in slot

TimeGenerated - TimeGenerated -
Real (log (1.0 - Ran (Seed))) / TotalGenerationRate

if (TimeGenerated .g t. 1.0) go to 10 ! No more packet in slot
RandomValue - Real (Ran (Seed))
do Session - 1, NumberOfSessions I Generated packet's session

if (RandomValue .le. SessionDistribution (Session)) then
GenerationTime - RealTime + TimeGenerated
call Measure (0, Session, GenerationTime, 0)
Tokens - NumberOfTokens (Session)
if (Tokens .gt. 0) then I Use token to enter 5acket

call Enqueue (FirstLink (Session), Session)
call Measure (-1, Session, GenerationTime, 0)
NumberOfTokens (Session) - Tokens - 1

else I Store packet at source
NumberOfPacketsAtSource (Session) -

NumberOfPacketsAtSource (Session) + 1
end if
go to 20

end if
end do I Session loop ends

20 continue
end do I Generation time loop ends
10 continue
return
end

p.

107

r ' .** r

I Recorder of measurements for simulator FCFS
Subroutine Measure (Link, Session, RealTimeMeasured,

T imeMe asure d)

integer Session, TimeMeasured
real'8 RealTimeMeasured
integer WrapAroundlncrement, FirstLink
include 'ParameterLS.f77' I MaxLinks, MaxSessions
include 'ParameterTB.f77' I TimeBufferLength
coumn / functionbiock / NumberOfLinksForSession (MaxSessions),

Links (MaxSessions, MaxLinks)
integer GenerationTimeBufferEntry, WindowingTimeBufferEntry,

TransmissionTimeBufferEntry, TransmissionTimes,
SunOflntraNet'workDelays, SunOfSquaredlntraNetworkDelays,
SumfDe lays, SumfSquaredDe lays

real MinEndToEndDelay, MaxEndToEndDelay, MinIntralindomvDelay,
MaxIntraV7Indove lay, MinPreV'WIndowDe lay, MaxPrewindovDelay,
MinPreTransmissionDelay, MaxPreTransmissionDelay,
MinV~IndowroNetDe lay, MaxIWIndowrToNetDe lay

real*8 GenerationTimes, WindowingTimes
Co n / measureblock / NumberlnProcess CMaxSessions),

GenerationTimeBufferEntry (MaxSessions),
GenerationTimes CMaxSessions, TimeBufferLength),
NumberGenerated (MaxSessions),
WindowingTimeBufferEntry (MaxSess ions),
VindowingTimes (MaxSess ions, TimeBufferLength),
NumberWindowed (MaxSessions),
T&UniSsionTimeBufferEntr7 (MaxSesi ions, MaxLinks),
TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
NumberTransmitted COaxSessions, MaxLinks),
MinEndToEndDe lay (MaxSess ions),
MaxEndToEndDe lay GMaiSess ions).
Su=fEndToEndDelays CMaxSess ions),
SunOfSquaredEndToEndDelays (MaxSess ions),
Minlntra~iindow~elay (MaxSessions),
MaxlntraWindovAelay (MaxSessions),
Sum~fIntraWIndovADelays (MaxSessions),
Sum~fSquaredIntraWindowDelays (MaxSessions),
MinPreWindo,%Delay CMaxSess ions),
MaxPreVAindovDe lay (MaxSess ions),
Su=fPreVindoROelays (MaxSessions),
Sumf SquaredPrrindowDe lays (MaxSess ions),
MinlntraNetvvrkDelay (MaxSessions),
MaxlntraNetworkDelay (MaxSessions),

A Sua:OflntraNetworkDelays (axSessions),
Sum~fSquaredlntraNetworkDelays (MaiSessions),
MinPreTransmissionDelay CMaxSessions),
MaxfreTransmisslionDelay (MaxSessions),
Su=fPreTransmissionDelays (MaxSessions),
SumfSquaredPreTransmissionDelay (MaxSessions),
MinVVindowroNetDe lay (MaiSess ions),
MaxWIndowloNetDelay (MaxSessions),
SumfWIndoW'oNetDelays (MaxSessions),
SuafSquaredW~ndoWroNetDelays (MaxSeassions),

108

MinDelay (MaxSessions, MdaxLinks),
?&xela(MNaxSess ions, ?&~nk)

* SudOfDelays (MaxSessions, MaxLinks),
SunOfSquaredDelays (MaxSessions, MaxLinks)

* integer Entry, OldTime, Delay
real*S GenerationTime, WIndowingTime
real IntraWindovDelay

if (Link .eq. 0) then I Packet generated
InProcess - NumberlnProcess (Session)
if ClnProcess .eq. TimeBufferLength) then I Overflow

stop 'Time buffer overflow occurred'
else I Enter packet generated

Entry WrapAroundlncrement (GenerationTimeBufferEntry
(Sesion), TimeBufferLength)

GenerationTimeBufferEntry (Session) - Entry
GenerationTimes (Session, Entry) - RealTimeMeasured
NumberGenerated (Session) - NumberGenerated (Session) + 1
NumberlnProcess (Session) - InProcess + 1

end if
else if (Link .eq. -1) then I Packet entered window

Entry -Wra~roundlncrement ('indowingTimeBufferEntry
(Sessionj, TimeBufferLength)

WindowingTimeBufferEntry (Session) - Entry
WindowingTimes (Session, Entry) - RealTimeMeasured
NumberWindowed (Session) - NumberWindowed (Session) +i 1

else if (Link .ne. LastLink (Session)) then I Enter transmission
Entry - Wrapkroundlncrement (TransmissionTimeBufferEntry

TransrnissionTimeBufferEntry (Session, Link) - Entry
TransmissionTimes (Session, Link, Entry) - TimeMeasuredA NumberTransmitted (Session, Link) -

NumberTransmitted (Session, Link) + 1
else I Packet transmitted on last link in path

Entry - WrapAroundincrement (TanSMissionTimeBufferfttry
(Session, Link), TimeBufferLength)

TransmissionTimeBufferEntry (Session, Link) - Entry
TransmissionTimes (Session, Link, Entry) - TimeMeasured
NumberTransmitted (Session, Link) -

NumberTransmitted (Session, Link) + 1
GenerationTime - GenerationTimes (Session, Entry)
EndToEndDelay - TimeMeasured - GenerationTime + 1.0
MinEndToEndDelay (Session) -

Min (MinEndToEndflelay (Session), EndToEndDelay)
MdaxEndToEndflelay (Session)-

Ax (MaxEndToEnd.Delay (Session), EndToEndDelay)
SumfEndToEndDe lays (Session) -

Sum~fEndToEndDelays (Sess ion) + EndToEndDelay
SumfSquaredEndToEndDe lays (Seassion)

SumfSquaredEndToEndDelays (Session) +.
EndToEndDe lay *EndToEndDe lay

'WindowingTime -WindowingTimes (Session, Entry)
IntraWIndovi~elay - TimeMeasured - WindowingTime + 1.0
MinIntraW~ndo%1)elay (Session) -

109

Min (MinlntraWindovjelay (Session), IntraWindo'wDelay)

*;! ~:MaxlntraWindo'wDelay (Session) -
Max CMaxlntraWindovvDe lay (Session), Intra~iindovwDelay)

Sun~fIntraWindov-Delays (Session) -
SuzefIntraWindovv~elays (Session) + IntraWindo'velay

Su=fSquaredInraWIndov~elays (Session) =-
Su~mfSquaredIntraWIndovADelays (Session) +
IntraWindo'wDelay *IntraVtndovA~elay

PreWindovOelay - EndToEndDelay - IntraWindo'wDelay
MinPre~rIndomDelay (Session)

Min (MlnPre~indov~clay (Session), PreWindowDelay)
MaxPreWindowDelay (Session) -

Max (MaxPre~indovDelay (Session), PreWindov-Delay)
SumfPreWIndovADelays (Session) -

SumfPreWIndovDelays (Session) + PreWindomDelay
Suf SquaredPrerIndove lays (Session) -

Suf SquaredPreWindove lays (Session) +
PreWindowDelay * PreVIndov~elay

OldTime - TransmissionTimes (Session, FirstLink (Session),
Entry)

IntraNetworkDelay - TimeMeasured - OldTime + 1
MinlntraNetworkDelay (session)

Min (MiuIntraNet'wurkDelay (Session), IntraNetworkDelay)
MaxlntraNetworkDelay (Session)-

Max (MaxlntraNetworkDelay (Session), IntraNetworkDelay)
SumfIntraNetworkDelays (Session) -

SumflutraNe two rkDelays (Session) + IntraNetworkDelay
Sum!SquedntTNeorkDelays (Session) "SumfSquaredIntraNetworkDelays (Session) +

IntraNetworkDelay SIntraNetworkDelay
PreTransmissionDelay-

EndToEndDelay - Real ClntraNetworkDelay)
MinPreTransmissionDelay (Session)-

Min CMinPreTransmissionDelay (Session),
PreTranami ss ionDe lay)

?AxPreTransmissionDelay (Session)
Max (MaxPreTransmi ss ionle lay (Session),
PreTransmissionDelay)

SumfPreTransmissionDelays (Session)
SumfPreTransmissionDelays (Session) +
PreTransmiss ionDe lay

Su=OfSquaredPreTransmissionDelay (Session)
SuifSquaredPreTransmissionDelay (Session) +
PreTransmissionDelay * PreTransmissionDelay

WlndovFroNetDelay - lntraWlndov~Oelay -
Real ClntraNetworkDelay)

Min~indoW~oNetDclay (Session)
Min CMinWmndowroNetDelay (Session),

~K. WIndoWroNetDelay)
MaxWIndoWroNetDelay (Session)-

Max CMaxW'IudoWroNetDelay (Session),
WindowI'oNe tDe lay)

SumfWndowfloNetDelays (Session)-
4 Su=fW~ndoWroNetDelays (Session) +

110

'WindoW'oNe tDe lay
Su=fSquaredWindowl'oNetDelays (Session)

Sum~fSquaredWindov#'oNetDelays (Session) +
Windowl'oNetDe lay * Windov.ToNetDe lay

do i - 2, NumberOfLinksForSession CSession)
Ne'wLink - Links (Session, 0)
NeWTime - TransmissionTimes (Session, Ne'wLink, Entry)
Delay - Nevrime - OldTime
MmnDelay (Session, NevLink) -

Min (MDelay (Session, Nev~iink), Delay)
MaxDelay (Session, NewLink)

MWax (MaxDelay (Session, Nev~ink), Delay)
Su=OfDelays (Session, NewLink) w

SunOfDelays (Session, NewLink) + Delay
SuziOfSquaredflelays (Session, NevALink) -

SuzzffSquaredDelays (Session, NewLink) + Delay *Delay
OldTime - NewrTime

end do!I Link delay loop ends
NumberlnProcess (Session) -NumberlnProcess (Session)-1

end if
return
end

I Enquoues packet in link-queue in simulator FCFS
Subroutine Enqueue (Link, Session)

integer Session
integer WrapAroundlncrement
include 'ParameterLS.f77' I MaxLinks, MaxSessions
include 'ParameterLB.f77' I Link.BufferLength
integer QueueHead, QueueTail
coon / qucueblock / LinkQueue (MaxLinks, Link~ufferLength),

QueueHead (MaxLinks). QueueTail (MaxLinks),
NumberOfPackets (MaxLinks)

integer Packets, Tail

Packets - NumberOfPackets (Link)
if (Packets .eq. LinkiBufferLength) then I Overflow

print *, 'Link ', Link, ' overflow occurred'
stop

A end if
Tail - WrapAroundlncrement (QueueTail (Link), LinkBufferLength)
QueueTail (Link) - Tail
LiukQueue (Link, Tail) - Session
NumberOfPackets (Link) - Packets + 1
return
end

IDequcues packet, if any, from link-queue in simulator FCFS
Subroutine Dequeue (Link, Session)

integer Session
integer WrapAroundlncremeit
include 'ParameterLS.f77' I MAxLinks, MaxSessions
include 'ParameterLB.f77' I LinkBufferLength
integer QueueHead, QueueTail
c ~n / queueblock / LinkQueue (MaxLinks, LinkBufferLength),

QueueHead (MaxLinks), QueueTail (MaxLinks),
Numbe rOf Packets (MaxLinks)

integer Packets, Head

Packets - NumberOfPackets (Link)
if (Packets .gt. 0) then I Link has packets waiting

Head -WrapAroundlncrement (QueueHead (Link),
LinkBufferLength)

QueueHead (Link) - Head
Session - LinkQueue (Link, Head)
NumberOfPackets (Link) -Packets -1

else!I Link idle
Session -0

end if
return N
end

,1*

112

IData used by simulator FCFS for network of Figure 4.1
Block Data Net'work

include 'ParameterLS.f77' I v&xLinks, MaxSessions
Co n / globalbiock / NumberOfLinks, NumberOfSessions
integer TokenBufferLength, OutLinks
conmon / schemeblock / TokenBufferLength (MaxSessions).

OutLinks (MaxLinks, MaxSessions)
conzon / functionbiock / NumberOfLinksForSession (MaxSess ions),

Links (MaxSessions, MaxLinks)
data NumberOfLinks, NumberOfSessions / 2, 3/
data OutLinks (1,l) / 2 /, OutLinks (1,2) / 0 1

OutLinks (2,1) / 0 1. OutLinks (2,3) /0/
data NumberOfLinksForSession (1) / 2 1

NumberOfLinksForSesuion (2) / 1I,
NumberOfLinisForSession (3) / 1I

data Links (1,l) / 1 /. Links (1,2) /2 1,Links (2,1) /1 1
Links (3,1) / 2 /

data TokenBufferLength (1) / 3 1,TokenBufferLength (2) /2 I
TokenBufferLength (3) /2/

end

cri
Pam~ 5

113

References

[1] Ahuja, V., "Routing and Flow Control in Systems Network Architecture," IBM Systems

Journal, Vol. 18, No. 2, 1979, pp. 298-314.

[2] Bially, T., B. Gold, and S. Seneff, "A Technique for Adaptive Voice Flow Control in

Integrated Packet Networks," IEEE Transactions on Communications, Vol. COM-28,

No. 3, March 1980, pp. 325-333.

[3] Bially, T., A.J. McLaughlin, and C.J. Weinstein, "Voice Communication in Integrated

Digital Voice and Data Networks," IEEE Transactions on Communications, Vol. COM-

28, No. 9, September 1980, pp. 1478-1490.

[4] Bullington, K., and J. Fraser, "Engineering Aspects of TASI," Bell System Technical

Journal, Vol. 38, March 1959, pp. 353-364.

[5] Cerf, V.G., and R.E. Kahn, "A Protocol for Packet Network Intercommunication,"

Wi IEEE Transactions on Communications, Vol. COM-22, No. 5, May 1974, pp. 637-648.

[6] Chandy, K.M., and J. Misra, "The Drinking Philosophers Problem," A CM Transactions

on Programming Languages and Systems, Vol. 6, No. 4, October 1984, pp. 632-646.

[7] Coviello, G.J., and P.A. Vena, "Integration of Circuit/Packet Switching by a SENET

(Slotted Envelope Network) Concept," Proceedings National Telecommunication Con-

ference, New Orleans, LA, December 1975, pp. 42.12-42.17.

[8] Fuchs, E., and P.E. Jackson, "Estimates of Distributions of Random Variables for

Certain Computer Communication Traffic Models," Communications of the ACM, Vol.

13, December 1970, pp. 752-757.

[9] Gafni, E.M., "The Integration of Routing and Flow-Control for Voice and Data in a

Computer Communication Network," Laboratory for Information and Decision Systems

114

Report 1239, Sc.D. Thesis Dissertation, EECS Department, MIT, Cambridge, MA,

August 1982.

[10] Gafni, E.M., and D.P. Bertsekas, "Dynamic Control of Session Input Rates in Commu-

nication Networks," IEEE Transactions on Automatic Control, Vol. AC-29, No. 11,

November 1984, pp. 1009-1016.

[111 Gallager, R.G., P.A. Humblet, and P.M. Spira, "A Distributed Algorithm for Minimum-

Weight Spanning Trees," ACIM Transactions on Programming Languages and Systems,

Vol. 5, No. 1, January 1983, pp. 66-77.

* . . [121 Garey, M.R., and D.S. Johnson, Computers and Intractability (A Guide to the Theory

of NP-Completeness), W.H. Freeman and Co., New York, 1979.

[131 Gerla, M., and L. Kleinrock, "Flow Control: A Comparative Survey," IEEE Transac-

tions on Communications, Vol. COM-28, No. 4, April 1980, pp. 553-574.

[14] Gold, B., "Digital Speech Networks," Proceedings IEEE, Vol. 65, November 1977, pp.

1636-1658.

[15] Golestaani, S.J., "A Unified Theory of Flow Control and Routing in Data Communi-
cation Networks," Laboratory for Information and Decision Systems Report 963, Ph.D.

Thesis Dissertation, EECS Department, MIT, Cambridge, MA, January 1980.

[161 Graves, S.C., H.C. Meal, D. Stefek, and A.H. Zeghmi, "Scheduling of Re-entrant Flow

Shops," Working Paper, Sloan School of Management, MIT, Cambridge, MA, Novem-

ber 23, 1982.

[171 Hahne, E.L., "Round Robin Scheduling for Fair Flow Control in Data Communication

Networks," Ph.D. Thesis Proposal, Department of Electrical Engineering and Com-

puter Science, MIT, Cambridge, MA, April 1985.

115

[18] Hayden, H.P., "Voice Flow Control in Integrated Packet Networks," Laboratory for

Information and Decision Systems Report 1152, S.M. Thesis Dissertation, EECS De-

partment, MIT, Cambridge, MA, October 1981.

[191 Hitz, K.L., "Scheduling of Flexible Flow Shops," Laboratory for Information and De-

cision Systems Report 879, MIT, Cambridge, MA, March 1979.

[201 Ibe, O.C., "Flow Control and Routing in an Integrated Voice and Data Communication

Network," Laboratory for Information and Decision Systems Report 1115, Ph.D. Thesis

Dissertation, MIT, Cambridge, MA, August 1981.

[21] Jaffe, J.M., "Bottleneck Flow Control,* IEEE Transactions on Communicaticn, Vol.

COM-29, No. 7, July 1981, pp. 954-962.

[22] Kekre, H.B., C.L. Saxena, and M. Khalid, "Buffer Behaviour For Mixed Arrivals and

Single Server With Random Interruptions," IEEE Transactions on Communications,

Vol. COM-28, No. 1, January 1980, pp. 59-64.

[23] Kogge, P.M., The Architecture of Pipelined Computers, Hemisphere Publishing Corpo-

ration, McGraw-Hill, New York, 1981.

[24] Mosely, J., "Asynchronous Distributed Flow Control Algorithms," Laboratory for In-

formation and Decision Systems Report 1415, Ph.D. Thesis Dissertation, MIT, Cam-

bridge, MA, June 1984.

[251 Orlin, J.B., "The Complexity of Dynamic Languages and Dynamic Optimization Prob-

lems," Proceedings ACM STOC, Milwaukee, 1981, pp. 218-227.

[26] Oshinaky, D.A., "Use of Fair Rate Assignment Algorithms in Networks with Bursty

Sessions," S.M. Thesis, Department of Electrical Engineering and Computer Science,
MIT, Cambridge, MA, May 1984.

116

[27] Papadimitriou, C.H., and K. Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1982.

[28] Raubold, E., and J. Haenle, 'A Method of Deadlock-Free Resource Allocation and

Flow Control in Packet Networks," Proceedings, IEEE 3rd International Conference on

Computer Communications, Toronto, Ontario, Canada, August 1976, pp. 483-487.

[29] Reiser, M., "A Queueing Network Analysis of Computer Communication Networks

With Window Flow Control," IEEE Transactions on Communications, Vol. COM-27,

No. 8, August 1979, pp. 1199-1209.

[30] Rinde, J., and A. Caisse, "Passive Flow Control Techniques For Distributed Networks,"

Proceedings, International Symposium on Flow Control in Computer Networks, Ver-

sailles, France, February 1979, J.L. Grange, and M. Gien, eds., North Holland, Ams-

terdam, pp. 155-160.

[311 Schwartz, M., and T.E. Stem, "Routing Techniques Used in Computer Communication

Networks," IEEE Transactions on Communications, Vol. COM-28, No. 4, April 1980,

pp. 539-552.

[32] Weinstein, C.J., and J.W. Forgie, "Experience With Speech Communication in Packet

Networks," IEEE Journal on Selected Areas in Communications, Vol. SAC-i, No. 6,

December 1983, pp. 963-980.

[33] Weinstein, C.J., and E.M. Hofstetter, "The Tradeoff Between Delay and TASI Ad-

vantage in a Packetized Speech Multiplexer," IEEE Transactions on Communications,

Vol. COM-27, November 1979, pp. 1716-1720.

.t€.

[34] Williams, G.F., and A. Leon-Garcia, "Performance Analysis of Integrated Voice and

Data Hybrid-Switched Links," IEEE Transactions on Communications, Vol. COM-32,

No. 6, June 1984, pp. 695-706.

117

_ ' : . 4; , :.- ', : - - ,, ' ';" .- '.-" .' ' : . ,.,, r 1W .,:

